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1 Introduction

1. An example. Let f(z) be a smooth function in R™ and
L@ )= [ g
w|=1

be the operator of mean value over a radius r sphere centered at y € R™. The integral transform I is
clearly injective.
Let C' be a compact hypersurface in R™ isotopic to a sphere.

Theorem 1.1 Let f(z) be a smooth function vanishing near C. Then one can recover [ from its mean
values along the spheres tangent to C', and the inversion is given by an explicit formula.

In fact we will show that this theorem is true for any compact manifold C satisfying a mild condition.
The only known before case was the family of all spheres tangent to a plane (horospheres in the hyperbolic
geometry, see [GGV]).

The function I f(y;r) satisfies the Darboux differential equation
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Let Sol(Ap,C>(R™ x R%)) be a space of smooth solutions of the Darboux equation Ap. We will
construct an inverse operator J as a map

J 1 Sol(Ap, C*(R™ x R*)) — C>(R™)



Namely, let A™(X) be the space of smooth differential m-forms on a manifold X. We will define a
differential operator v : C*(R™ x RY) — A™(R™ x R% ) such that the m-form vy is closed if (and
only if) Apyp = 0. For a solution ¢(y,r) we define (Jp)(z) integrating the (closed!) differential m-
form vo(y,r) over a certain m-cycle. In particular restricting this form to the m-dimensional subvariety
of all spheres tangent to C' and integrating over it we get the theorem, see chapter 7 for details and
generalizations.

2. General problem. Let X be a smooth manifold of dimension n and M a system of linear partial
differential equations on X. Denote by Sol(M,C> (X)) the space of smooth solutions to M.

Let NV be a linear system of PDE on a manifold Y. Let K(z,y)dx be a (n,0)-form on X x Y with a
compact support along X. Assume that it satisfies the system A along Y. Then the kernel K(z,y)dz
defines a linear map Ix : C°(X) — Sol(N,C>(X)), f(z) — [ k(x,y)f(x)dz. Its restriction to
Sol(M,C>(X)) gives an operator Sol(M,C>(X)) — Sol(N,C*>°(X)). However if M is non trivial
the functional dimension of Sol(M,C*°(X)) is less then n, so many kernels represents the same operator.

In this paper I adress the following

Problem. What is the natural description for the linear maps
Sol(M,C®(X)) — Sol(N,C>*(Y)) (1)

When Y is a point we come to the question of natural description for linear functionals on the space
Sol(M,C*(X)). On the other hand the composition of a linear map (1) with the evaluation at a point
y €Y gives a linear functional on Sol(M,C>(X)). So these questions are closely related.

In chapters 5-6 we suggest a construction of operators between solution spaces of linear PDE called
natural linear maps. Unlike the operators given by the Schwartz kernels K (x,y)dz, the natural linear
maps are obtained by integration of closed forms over certain cycles in X. We apply these ideas to solve
some old problems in integral geometry.

In chapter 5 a general construction of linear maps between solution spaces is given. The natural linear
maps seems to be the most interesting particular case of that construction.

To discuss these questions we need the language of D-modules.

3. Systems of linear PDE and D-modules. Let Dy (or D) be the sheaf of rings of differential
operators on a smooth manifold X. Suppose we have a linear system M of p differential equations on ¢
functions fi,..., fq:

q
M= {Zpijfj =0,i=1,..,p}

j=1
Then we can assign to M a left coherent D-module M with ¢ generators ey, ...,e, and p relations:
D-e:
M= 2% _ Coper(p? — DY)
(+P(Z Pusy))

On the other hand a coherent D-module M = Coker(DP — DY) provides a linear system of p differential
equations on ¢ functions.

A solution f to the system M in some space of functions F is nothing else then a morphism of
D-modules oy : M — F.

4. Natural functionals on solutions to M. Below X usually will be an algebraic manifold over
R of dimension n. Let D'(X) be the space of distributions on X understood as the space of linear
continuous maps on the space of smooth differential forms of top degree with compact support on X.
Denote by D™ (X) the space of m-currents on X, i.e linear continuous functionals on the space of smooth
differential (n — m)-forms with compact support on X.

The de Rham complex DR(M)® of a D-module M is defined as follows:

M-5 Meo ' -5 L Moot L Mee o (2)



where M R0 Q" is sitting in degree 0, d has degree +1 and given by

d(m @ w) ::m®dw—|—z i_m@dmi/\w

0
(it does not depend on coordinates x;), and O is the structural sheaf of X.
Consider the complex

DR(M ®p D'(X))* = DR(M)®* @0 D'(X)

Notice that DR(D’(X))® coincides with D*(X)[n], the usual de Rham complex of currents on X
shifted by n to the left. Therefore any f € Sol(M,C*> (X)) defines a homomorphism of complexes

mo f: DRM ®o D'(X))* — D*(X)[n]
given by the composition
DR(M ®0 D'(X))* -5 DR(C™®(X) ®0 D'(X))* "% D*(X)[n]

Here m is induced by the homomorphism of D-modules C*°(X) ®p D'(X) — D’(X) provided by the
multiplication. We get a pairing

H™(DR(M @0 D'(X))[-n]) @ Sol(M,C>(X)) — H™(X,R) (3)
(K, [) — [(mo f)(r)]

Evaluation on a homology class [y] € Hp,(X,R) leades to a functional
Sol(M,C=(X)) — R, f—<[(mof)x)],}]> (4)

Such functionals are called the natural functionals on Sol(M,C>(X)).

How the integer m depends on M? Let X, C T*X be the characteristic variety for a D-module M.
It is coisotropic, so daq := dimXrq — dimX > 0. The number da can often be viewed as the functional
dimension of the solution space to M. We will see in chapter 3 that

H™DR(M ®0 D'(X))[-n]) =0 for m > dum

In particular natural functionals for a non zero system of PDE are never given by integration over
fundamental class of X.

For a D-module M one may ask whether the described above natural functionals give all the dual
to Sol(M,C>(X)). Integral geometry (including the cohomological Penrose transform) provides a wide
class of examples where the answer is positive.

Remark. If X is noncompact, the integration over a (may be noncompact) m-cycle v, defines a
linear functional f — f%L k(f) on an appropriately chosen class of functions with certain decreasing
conditions at infinity. In a sence a system of PDE ”changes topology of the space”, see examples in
chapter 2 and s. 5.6 below. I will not pursue this point further and hope to return to it in future. (If M
is holonomic the complex of solutions is a constructible complex of sheaves on X ”changing” topology of
X).

5. An elementary description of natural functionals. Assume that a D-module M has ¢
generators. Then an m-chain x in the de Rham complex DR(M ®p D’(X))[—n] may be written as

q
kK=Y Pj®w;, PjeDx, w;cD™X)
j=1

So we may think about it as of a differential operator

FeC®(X)T— D™(X);  E(frsn fg) — > Pifi) w;
=1



Suppose that & is a cycle in the De Rham complex of M. Then the m-current z(f1,..., fy) is closed on
solutions of the system M, i.e. di(fi,...,fy) = 0 whenever the functions (fi, ..., f;) satisfy the system
M. In this case we will say that the differential operator & is M-closed.

Remark. This definition makes sence for any system of partial differential equations, not necessarily
linear. It leads to a notion of conservation laws for a system of nonlinear PDE.

6. Natural linear maps between solution spaces: a naive version. Let M and AN be systems
of linear PDE on manifolds X and Y. A natural linear map

I: Sol(M,C®(X)) — Sol(N, D'(Y))

is defined as follows. Let k, : C*°(X) — D™(X) be an M-closed differential operator whose coefficients
are distributions on Y satisfying the system N. Then

I:f+— kyf € Sol(N,D'(Y))

Ym

where 7, is an m-cycle in X and by definition f,y Kyf =< [ym], Ky f >. The key idea of this paper is
the following: '

If there is a (continuous) linear functional on solutions to a system of linear partial differential equa-
tions M or an operator between solution spaces to M and N, then one should look for its natural
realization.

7. Relation with integral geometry. Let B be a manifold of dimension n and a linear operator
I CF(B) — C=(1)  fla)— [ Kl 6o (5)
B

enjoys the following properties:

It is injective, transforms functions f(x) to solutions of a linear system of PDE N on T, and
I (C§°(B)) is dense in Sol(N,C>=(T)).

Usually K(z,¢) satisfies a holonomic system of differential equations.

Such a situation is typical in integral geometry and appears as follows. Let {B¢} be a family of
submanifolds of B parametrized by a manifold I". Suppose on {B¢} densities p¢ (depending smoothly on
€) are given. Then there is an integral operator

1:C5%(B) — C=(),  f(z) — : f(@)ne (6)
e
So here K (x,&) = p(x,§) - 6(A)db, where db is a volume form on B, and
A:={(z,§)|x € Be} C BxT

is the incidence subvariety. The integral transform I often satisfies the list of properties above. This was
discovered by F.John [J] for the family of all lines in R?, and developed much further by Gelfand, Graev,
Shapiro [GGrS]. Here are some examples.

Example 1. Consider the integral transformation

I: f(l'l, ...,l‘n+1) — /f(tl, ...,tn,aZt? + Zbltl + c)d"t (7)
i=1 =1

related to the (n + 2)-parametrical family of paraboloids in R"*1. Let S(R™*!) be the Schwartz space of
functions in R™*1.
Lemma 1.2 If f € S(R"™1) then (%260 -3, g—;)lf =0.

The integral transformation I is injective on S(R™T1).



Proof. Applying 82—236 to the right-hand side of (7) we get

n n n
[0t tana 3 3 bt O
i=1 i=1 i=1

Applying >, g—; we get the same result. Let a = 0. Then [ is the Radon transform and so the lemma

follows from its standard properties.
Example 2. Consider the integral transformation

k k
Iy : f(l‘l, ,In) — /f(tl, ...,tk,z&{tj + a(l), ...,Zaihktj + ag_k)dtl...dtk
j=1

Jj=1

related to the family of k-planes in R": x4, = 25:1 aij + af.

Theorem 1.3 (/GGrS]) a) If f(x) € S(R™) then

0? 0?
(o — s )1 =0
dal’da?  Dal?dall
11 12 11 12
where k+1 <11,i0 <n, 0<j1,752 <k.
b) I, is injective on S(R™) and provides an integral formula for solutions the system of PDE above.

Let us return to the integral transform Ix (see (5)). Its properties implies that its inverse would
provide a continuous linear map

Jx : Sol(N, C>(T")) —s C*(B)

Definition 1.4 An integral transform Ik admits a universal inversion formula if the inverce operator
Jk is given by a natural linear map.

To clarify the meaning of this definition consider the composition J, of the operator J with the
d-functional at a point b € B. Its natural realization is given by an N-closed differential operator
vy : C°(I') — D™(T") and a certain n-dimensional cycle 73 in I' such that

/ w(Licf) = cpry) - F(B)

Here cy,,) is a constant depending linearly on the homology class of v, and n = dimB. We define the left
hand side as < vp(Ik f), [1] >. To compute the integral we may use any cycle ~, transversal to the wave
front of the distribution ky(Ix f). Then the restriction of this distribution to =, is defined and we can
integrate it over the fundamental class of ;. So we can find the value f(b) if we know only the values of
I (f) at an infinitesimal neighborhood of any such a cycle. This explanes the name ” universal inversion
formula”.

8. Local and nonlocal inversion formulas in integral geometry. Let us discuss in more details
the general Radon transform (6).

Definition 1.5 A local universal inversion formula for the Radon transform (6) is given by a differential
operator ky, : C°°(T') — A*(T}) such that ky(If) is closed (on T}) and

/ kp(Lf) = iy, - f(b)

where cpy,) is a constant (depending linearly on the homology class [y]).

Vi)



In particular the value of any smooth function f on B at any point b can be recovered from its integrals
over the submanifolds B, passing through an infinitesimal neighborhood of b.

Let I'y be the variety parametrizing all the subvarieties B¢ passing through a given point b. Set
k := dimBg. Notice that diml' — dimB = dimI'y, — dimBe¢. So if dimI’ > dimB the degree of the form
kp(If) is less then dimT.

A first example of local universal inversion formula was discovered in 1967 by I.M.Gelfand, M.I.Graev
and Z.Ya.Shapiro for integral transformation I related to the family of all k-planes in C* ([GGS]). Here
we treat complex planes as real submanifolds and integrate smooth functions along them. Later more
generic examples were studied, including local universal inversion formulas for the families of complex
curves, see [GGiG], [BG], [Gi].

However in integral geometry there are many examples where there are no local inversion formulas.
This is quite typical in “real” integral geometry (i.e. we integrate over family of real submanifolds). For
instance in examples 2 (resp 3) the inversion formula is nonlocal if the dimension of hyperboloids (resp.
planes) is odd. It is always non local for integral transformations related to any family of real curves.

A very interesting approach to integral geometry on k-planes in R"™ was suggested by I.M.Gelfand
and S.G.Gindikin [GGi], (see also [GGR]). However it was based on the Fourier transform in R™ and so
can not be generalized to families of “curved” submanifolds, like in examples 1-2. What is even more
important, the differential k-form x was replaced by a k-density, so a possibility to use the Stokes formula
was missed. It seems that this approach to integral geometry was not really understood yet.

As a result the nature of the form x;, and inversion of the general integral transformations, especially
if they do not admit a local inversion formula, were the key unsolved problems in integral geometry.

The main idea of this paper is that

Inversion formulas in integral geometry are given by natural linear maps between solution spaces of
systems of partial differential equations.

Let me explain how the local universal inversion formulas fit in this concept. The form k(I f) is a
differential k-form on I'y. Since n — k = dimI’ — dimB, a k-form on I'y defines an n-current on I'. The
n-current corresponding to ky(If) leads to a natural liear map given by integration of x,(If) over an
n-cycle K C I'. We will demonstrate this for the Radon transform over spheres in R™.

In general our approach leads to a universal inversion formula where the functional J;, is represented
by a differential n-form on I'. The fact that this n-form does not concentrated on a subvariety I’y (or
a certain bigger subvariety of I') means that we get a nonlocal universal inversion formula. So we treat
simultaneously both local and nonlocal inversion formulas.

The form &y, appeared in [GGS] as a construction "ad hoc” and looks like a very special phenomena.
In our approach the universal inversion formula is a very general property of the corresponding system
of linear PDE. Its locality, however, is a rather rare phenomena, which generalizes the Huygens principle
or, more generally, the notion of lacunas for hyperbolic differential equations.

In particular in these examples our natural functionals describe the whole dual to the space of solutions
of a linear system of PDE.

9. Some general remarks on analytic theory of overdetermined systems. The classical
theory of PDE usually study systems of p linear partial differential equations on p unknown functions on
X i.e. the characteristic variety of the system has codimension 1. (Of cource there are some exceptions
with extremely reach analytic theory, like the Cauchy-Riemann system). It seems that one of the reasons
is this. A system P;f = Pof = 0 of two general differentaial equations on one unknown function has
no solutions because the corresponding D-module is equal to zero (even if P; are differential operators
of order one). This shows that overdetermined systems (i.e. the ones where the codimension of the
characteristic subvariety is greater then 1) can not describe a physical process in a way similar to systems
of p equations on p unknown functions (like Laplas, Schrodinger, etc. equation): a small perturbation of
the experimental data leads to a system without solutions. Therefore one should not expect an analytic
theory of general overdetermined systems, i.e. a theory stable under a perturbation of a system

The theory of D-modules is a tool providing nontrivial linear systems of PDE. We think that an
interesting overdetermined system of PDE should be a part of a reacher data. For example for a system



N on a variety ' appearing in integral geometry (see s.6) we should also remember the kernel K (z, &) on
B x T'. So perturbing such a system we should deform the whole data, not only the system N on T

We may wonder about the goals of analytic theory for some special overdetermined systems. It seems
that the problem of natural description of linear maps between solution spaces looks quite promising.

10. The structure of the paper. Chapter 2 contains examples of functionals and natural func-
tionals on solution spaces of systems of PDE. In chapter 3 we recall some general information about
D-modules, including the duality on the derived category of D-modules, needed for applications to in-
tegral geometry. In chapter 4 our key tool appears: the Green class of a D-module. It generalizes the
classical Green formula for a single differential operator. Chapter 5 contains a definition and properties
of general linear maps between solution spaces of (complexes of) D-modules. Then we define natural
linear maps as a quite special case of general linear maps. The definitions uses the language of derived
categories. This is necessary for many reasons including:

1) Even nice systemes like M = {21 - f = ... = 2 - f = 0} may have no smooth solutions, so one
should consider the spaces of “higher” solutions. (In the example above only Extk (M, C(R™)) # 0; it
is isomorphic to C>°(R"~%)).

2) The duality may send a D-module to a complex of D-modules.

In applications the dual complex for a D-module M is often concentrated in just one degree. Such
M’s will be called excellent D-modules. In chapter 6 we define natural linear maps between solution
spaces for excellent D-modules. This allows to eliminate derived categories and makes the story more
elementary. I made this chapter independent of chapter 5, so those who interested only in applications
to “nice” systems of PDE could go directly to chapter 6.

In chapter 7 we demonstrate how the general method works for the family of all spheres in R™ (see
section 1.1 above). Our approach leads to universal inversion formulas which are nonlocal when m is odd
and local when m is even. The corresponding problem of integral geometry was unsolved even for the
family of circles in the plane.

In fact we study in chapter 7 integral operators I, more general then the Radon transform over the
family of spheres. They are intertwiners for the group O(m + 1,1) acting from the space of sections
of a line bundle over S™ to the space of sections of a line bundle over the manifold X,,;1 of oriented
hyperplane sections of S™. (The hyperplane sections of S™ can be identified with spheres in R™ by a
stereographic projection). The image of I is described by differential equations. So the inverse operators
gives examples of intertwiners which are well defined only on a subrepresentation.

The next problem after the definition of natural linear maps would be development of ”calculas of
natural linear maps”. In particular there are the following questions:

a) How to compose natural linear maps.

b) How to compute their composition. For instance when the composition of two natural linear maps
is equal to a given natural linear map.

A universal inversion formula for the integral transform I is a natural linear map Jx : Sol(N, C=(T)) —
C*°(B) such that the composition Jx o I equals to the identity map, so this is a very special case of
the problem b).

The development of this program should include a version of the theory of Fourier Integral Operators
as a special case when M = Dx, N' = Dy-.

In chapter 8 we study an algebraic version of the problem of composition of natural linear maps.
It turns out that one can organize neatly the algebraic structures responsible for that introducing a
bicategory of D-modules.

The objects of this bicategory are pairs (X, M), where M is a complex of D-modules on a variety
X. A l-morphism (X, M) — (Y,N) is the algebraic part of the data needed to construct a linear map
RHomp(M,C>(X)) — RHomp(N,D'(Y)). Composition of 1-morphisms mirrors the composition of
linear maps. A 2-morphism between two 1-morphism reflects coincidence of the the corresponding maps
on functions.

In the end of chapter 8 we consider the simplest examples of composition of 1-morphisms and 2-
morphisms relevant to integral geometry.



The main results of this paper were annonced in [G1l]. Another approach to integral geometry via
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2 Examples

1. Analitycal functionals [GS]. Let X = C and M be the Cauchy - Riemann equation % f(z,2)=0.
Let g(z) be a holomorphic function. Then

f(z,Z) - g(z)f(z, z)dz

is an M-closed operator of order 0. The corresponding linear functional should be

£ — [ g2)r)de Q
71
To make sense out of this consider the space Z; of holomorphic functions f(z) such that |2]9-|f(2)] <
Cy-e® ™ for any ¢ > 0 (the constants a and C, may depend on f). Let C = {CUS'} be a compactification
of the complex plane by a circle such that each line compactifies by endpoints at + and - infinity and
two lines have the same endpoints if and only if they are parallel. Let x_ and x; are the endpoints of
the x - axis (z = x +1y). Let 71 be a cycle representing the nontrivial homology class in H;(C,z_ Uz, ).
Then the right side of (8) is convergent for g(z) € Z; and defines a continuous linear functional on Z.
One can also take g(z) to be a meromorphic function and integrate along compact 1-cycles in

C\{poles of ¢(z)}. For example if g(z) = ﬁ we get the Cauchy formula
1 z
f(Zo) = /L( )
y

211 zZ— 2

It can be interpreted as the natural realization for the d-functional f(z) — f(2o).
Now let M be the Cauchy-Riemann system in C™. Let g(z) be a holomorphic function. Then

f(z,2) — g(2)f(z,2)dz1 A ... Ndzy,

is an M-closed operator of order 0. The corresponding natural functional is

fz) — g(2)f(z)dz1 A ... Ndzy,

Tn

where f(z) belongs to the space Z,, of holomorphic functions satisfying some grouth condition ([GS]). So
any ¢(z) € Z, defines an element of DSol(M),
However for n > 1 there are another M - closed operators. Namely, let us look at the classical
Bochner - Martinelly formula
w*(2) Nw(z2)

f(20) = /5271_1 f(Z)W 9)

where w(z) = dz1 A ... Adz, and w*(z) = 3.7 (=1)2id21 A ...dz;... A dz, and [s2,_1] is a generator in
Hs,,—1(C™\zg) The zero order operator

w*(2) ANw(z)
|z — zo|2"

f(z,2) — [(2)



represents a non-zero element of DSol(M)a,—1 for X = C™\zg
In fact all “integral formulas” in complex analysis (like the Cauchy formula in a polydisc, the Weil
formula ...) are examples of elements in DSol(M),,, where n < m < 2n—1 given by zero order operators.
2. The Green function of a differential operator and a natural realization of the §-
functional. Let P =Y as(z)9! be a differential operator and P! =" dZa;(z) the transposed one (I is
the multyindex). The classical Green formula is

(Pu-v—wu-Pw)dz A ... Ndx, = dw,_1(u; P;v) (10)

where wy,—1(u; P;v) is an (n — 1)-form depending linearly on v and v. For example if A = """ | 62 then

wWn—1(A;u,v) = Z(u;v — uwy, )dzy A dxy... Ndx,,

i=1
A Green function g(x,y) for P is a generalized function on X x X satisfying
Prg(x,y) = Pyg(x,y) = d(z —y)

Let us put in (10) u := g(x,y) and suppose Pv = 0. Then

v(x) :/ wn-1(g9(z,y); P;v)

where s,,_1 is a small (n—1)-sphere around z. Therefore w,_1(g(x,y); P;v) provides a natural realization
of the d-functional f — f(z).

There are differential operators that do not have a Green function, for example the H. Lewy operator
1/2(0y, +10s,) — (z1 + ix2)0y, or the operator 0, — ixd,.

3. A Green form for an arbitrary system M.

Definition 2.1 A Green form for a system M is an element g, € Sol(M),_1 such that
dgy M 0(x —y)dxy A ... Ndxy,
M ) .
Here = means M-equivalence, i.e.

dgy(f) = f(y)dzr A ... ANdzy, f e Sol(M,C>(X))

If g, is a Green form for M then for any f € Sol(M,C*(X)) one has

o) = [ lf)

Here s,,—1 is a small sphere around y. This follows from the Stokes formula.

Example 2.2 g, : f — w,_1(P;g(x,y), f) (see s 2.2 above) is the Green form for a differential equation
Pf=0.

Example 2.3 The Bochner - Martinelly form (9) provides a Green form

w*(Z) Nw(z)
[z — 202

f—1

for the Cauchy-Riemann system in C™.



4. A universal solution of a boundary value problem. Let M be a system of PDE on
X and m := dp. Let Id : Sol(M,C>®(X)) — Sol(M,C>®(X)). be the identity map. Its natural
realization should be given by an M-closed operator G, : C*°(X) — D™(X) depending on a parameter
x € X whose coefficients considered as functions on z are also solutions to M. For a given solution
¢ € Sol(M,C>*(X)) one has G, (¢) is an m-form on X such that for any closed m-dimensional manifold
Y one has

/ G () = e () (12)
Y

where ¢[y] is a constant depending linearly on the homology class of Y.

According to the definition to compute G, (¢) at a point y € Y one has to know the restriction and a
finite number of transversal derivatives of ¢ at y. So formula (12) is a universal solution to the Cauchy
problem for M on Y. The fact that daq can be often viewed as a “functional dimension” of the space of
solutions to M) looks very natural from this point of view. G, will be referred to as the boundary value
problem Green form.

Remark 2.5. There are two different realizations for the identity map given in s. 2.3 and s. 2.4. 1
would like to emphasize the following differences between them. The realization given in s. 2.3 is not
a natural one because the form is not M-closed. However one may interpret it as a natural realization
for a modification of M at x. Further, in general the cycles for g, and G, are of different dimension
and in fact of different nature. Namely, for a Green form g, the cycle always exist and represents a
class in Hy,_1(X\z), while for the boundary value problem Green form G, the cycle in (12) represents a
homology class of X of dimension m and its existence is a nontrivial problem.

3 Basic facts about D-modules

For conviniense of the reader I will recall some material about D-modules (see [Be], [Bo]).

1. The bimodule DY. I will assume that X is an algebraic manifold, D = Dx is the sheaf of regular
differential operators on X and Q2x the Ox - sheaf of regular differential forms of highest degree on X.
Qx has a right Dx-module structure given by

w-f=fw, w-§=—-Lew
where f € Ox and ¢ is a vector field. Here Lew := digw. Set
Dgg =Dx Qo Q)_(l ZHO’ITL@X(Q)(,'D;() (13)

where D% is Dx viwed as a right D-module via right multiplication. Then (13) carries 2 commuting left
Dx-modules structures. The first is provided by the left multiplication on Dy, and the second, 0", is
given by

§oN)(w) =Aw-§) —Aw)- € (14)
where £ is a vector field and A € Homp, (Qx, D% ).

The two natural commuting left Dx-module structures on DS let us to consider DL as a D-module on
X x X. Tt is canonically isomorphic to the Dx «x x-modules da of é-functions on the diagonal A C X x X.
There exists a canonical involution on Dgl( interchanging the two left Dx-module structures. For da it is
induced by the switch of the factors of X x X.

2. The duality functor. Let D°,(Dx) be the derived category of bounded complexes of Dx-
modules whose cohomology groups are coherent Dx-modules. Let us define a duality * : ch’oh(D x )0 —
D(Zzoh (DX) by

*M := RHomp, (M, D$)[dimX]

The second Dx-structure on D¢ provides a left Dx-module structure on the sheaves Bt (M, DL).

To compute *M we should find a bounded complex P = {— P~ — PY — PL — .} of locally
projective coherent D-modules quasiisomorphic to M and set *M = *P where (¥P)? = x(P~dmX-1) .=
Homp, (P~#mX—1 DL). Tt is easy to see that «x P is isomorphic to P. Therefore xx = Id.
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The object *xM represents the functor
N — RHomp, (N KM, da)[dimX]

i.e. one has
RHomp, (N, xM) = RHomp, (N KM,da)[dimX] (15)

Indeed, there is canonical morphism
RHomp, (N XM, DE) — RHomp, (N, RHomp, (M, D))

It is obviously an isomorphism when N' = M = Dy, and so using locally free resolutions we see that it
is an isomorphism in general.

Let SSM be the singular support of a D-module M. The following important result was proved by
Roos.

Theorem 3.1 a) M has a finite resolution by locally projective Dx -modules.
b) codimSS(Exty, (M,D) > i
¢) If codimSS(M) = k, then Exty, (M,DE) =0 fori < k.

Notice that H(xM) = Emt%i;"x (M, DL) The Roose theorem implies that *M is concentrated in
degrees [—dimX, —codimSSM].

L
Lemma 3.2 DR(M) = Qx Qp, M.

Proof. Using the Koszul complex we see that DR(Dx) is a locally free resolution for the right
Dx-module Qx. One has DR(M) = DR(D) ®o M. Let D*(Shy) be the bounded derived category of
sheaves on X.

Theorem 3.3 Let M € D°,(Dx) and N' € D*(Dx). Then there is an isomorphism in D°(Shx)

coh

functorial with respect to M and N
DR(M @0 N)|[—dimX] = RHomp, (M, N) (16)

This nature of this isomorphism and the fact that A/ may not be coherent plays a crucial role, so
we will scetch its proof following [Bo], ch. 6. Let us replace M and N by bounded locally projective
resolutions P}, and PR;. One can suppose P}, to be locally free from certain low degree on. Therefore
according to lemma 3.2 to prove the theorem it is sufficient to construct for a given coherent Dx-modules
M and N a natural morphism (functorial with respect to M and A/)

a:Qx Qpy (Hompx (M, Dy ® Q") ®oy N) — Homp, (M, N) (17)

which will be an isomorphism if M = Dx.
The functors Qx®p, and Homp, in the left-hand side of (17) are defined using different commuting

left Dx-structures on Dy ® Q)}l. So we can interchange them and get the canonical morphism from the
left-hand side of (17) to

Homp, (M,QX Dy (DX®Q)_(1)®OX N)) (18)

There is canonical isomorphism of D x-modules
Qx @py (DX ® %) ®oy N) =N (19)

Indeed, the left structure on (Dx ® Q') we used to define Qx ®p, (Dx ® Q') is provided by the
left multiplication in Dy, therefore Qx ®@p, (Dx ® Qx") = O. So (18) is canonically isomorphic to A as
O-module. This isomorphism commutes with the action of vector fields. So (19) is canonically isomorphic
to Homp, (M, N). Theorem 3.3 is proved.

Placing to (16) N/ = C>°(X) and using x x M = M we get

11



Corollary 3.4
DR(M ®p C*(X))[-dimX] = RHomp, (*M,C*>(X)) (20)

In particular
Homp, (*Dx, D' (X)) — DR(D$ @0 D'(X)) = D™(X)

Corollary 3.5 For any A,B € Db ,(X), C € D*(X) one has a canonical functorial isomorphism in
Db(th)
RHomp, (A, B®p, C) = RHomp, (A®o, *B,C)

Proof. By the theorem above both parts are isomorphic to
RHomp, (Ox,*AR®o, BRo, C)

In particular for M € D%, (X) there is a canonical morphism of Dx-modules

im: Ox — x Mo, M (21)

More  precisely, there  exists a  canonical  section over X of  the  sheaf
H°(RHomp, (Ox,*M®e, M), or, what is the same, a canonical morphism Cx — RHomp, (Ox,*M®0o
M) in Db(th)

3. Functors between the derived categories of D-modules . Let Y — X be a morphism of
varieties and dy,x := dimY — dimX. Let p* be the naive inverse image functor on D-modules. Then
pt = Lpt [dy,x]. If p:Y — X is smooth then p, can be computed via relative De Rham complex
P«M = Rpe(DRy|x(M)), where DRy |x (M) := Q;,lX ® M[dy x].

Lemma 3.6 Suppose p is smooth. Then there is a canonical isomorphism of functors on D’C’,oh(D)
*

p* = *p!* = p! [—2dy7x]

Proof. See proof of proposition 9.13 in [Bo].
Let pr := xpyx.

Theorem 3.7 Suppose p is proper. Then py = p. on Db, (D) and the functor py (resp. p*) is left adjoint

to p' (resp p.), i.e.
RHomp(p* M,N) = RHomp(M, p.N)

RHomp(mM,N) = RHomp(M,p'N)
Proof. See proof of theorem 9.12 in [Bo].

Lemma 3.8 Let p : X — x be projection to the point and A : X — X x X be the diagonal. Then
RpeRHomp(xM, N) = p.A' (MK N)

4 The Green class of M

143

. we can say that there is only one formula (which we shall call
“fundamental formula”) in the whole theory of partial differential equations,
no matter to which type they belong.”

J.Hadamard, Lectures on the Cauchy problem.

0. The definition. For any M € D’ , (Dx) the identity map in Homp, (M, M) provides a canonical

coh
element

G € HAmX (DR(*M R0y M)) (22)

12



I will call it the Green class of M.

The right hand side of (22) is a sheaf on X, and G4 is a canonical section of this sheaf. A more
concrete way to think about it is this. Choose a locally projective resolution M® for M. Take a
Cech covering {U;} of X (in the classical or Zariski topology). Then there exists a section in the Cech

complex C(Z/{.,DR(*M‘ R0y ./\/l')) with coefficients in the complex of sheaves DR(*M*® ®p, M?*)

which represents the Green class.
1. The Green class and the classical Green formula. Let P be a differential operator. Set

D DL
X and *P = X

P:
Dx - P P-DY

Here D is considered as a left D-module with respect to the second structure. Notice that Homp(D$, C® (X)) =
A"(X). Let v € A*(X). According to the Green formula there exists an (n — 1)-form w,_1(p; P;v) on
X such that (P* is the adjoint operator on A™(X))

Py-v—yp-Pv=dw,_1(p; P;v) (23)

Of course neither (n — 1)-form w,_1(p; P;v) nor its cohomology class [wy,—1(p; P;v)] are defined
canonically by (23). However there is a way to define a cohomology class in H"~!(X, R) starting form
the Green formula. Namely, locally there exists an algebraic bidifferential operator

wp : C®(X) @0 AM(X) — A" 1(X) such that dwp=P®1—1® P*

80 wp—1(p; P;v) := wp(p®wv). For two different algebraic bidifferential operators wp and w' there exists
an algebraic bidifferential operator

Wh O®(X) @0 AM(X) — A"%(X) such that dw =wp —wh

and so on. So choosing a covering and taking a partition of unity corresponding to it we get a well
defined cohomology class [wy,—1(p; P;v)]. Below we explane how to get it without computaions in local
coordinates, using the D-modules instead. (On the other hand the approach we scetched leads to an
equivariant cohomology class of the group of diffeomorphisms of X).

Lemma 4.1 xP[—1] is isomorphic to ¥P, so the Green class Gyp is an element of H" ' DR(*P ®0 P).
Proof. Let Dx £, Dx be the obvious free resolution for P. It is concentrated in degrees [-1,0]. So
RHomp, (P.DY) = (DY =~ DY)n]

(the complex is concentrated in degrees [-n,-(n-1)]), where P* : Q — Po(. Recall that there is canonical
involution on D interchanging two left Dx-structures. If we choose a volume form w this involution
sends P ® w™! just to P! @ w™! where P! is the transposed to P defined using w. The lemma follows
immediately from these remarks.
Let .
Rp = Dx - Dx, Rp-:=DY L DY

be the resolutions for P and *P. Their tensor product over O
D ®p DY rel p ®e D
Rp Qo Rpx = 1QP*7T T-P*®1

P®1
—

D@@DQ D@@DQ
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sits in degrees [—(n — 2), —n]. Let

L Rp @0 Rp- @0 Q"1 -5 Rp @0 Rp- 00 Q7

be the de Rham complex DR(Rp ®o Rp-). Its degree —(n — 1) part is
(D 20 D200 Q" @ DoeD?®e Q") & Do DYoo ! (24)

Since D ®p D ®o Q" = D ®@p D, there is a canonical element (1® 1,1® 1) in the left summand of (24).
Choose a covering {U;} of X. Consider the Cech complex

C({th}, DR(Rp G0 Rp-))
An —(n — 1)-cocycle G o in this complex such that
the component in c(ui, (Do D00 Q" & DooD00 Q")) s 191,101)

represents the Green class. Its existence follows from general theory. N

Let wﬁﬁl be the componenet of G in C(U;, D ®o D ®o Q" 1), and wﬁf’_]% the component in
C(U; ;,D®0 D ®p 2"~2). Then dwfff% = w,(le - wfljzl. To relate this cocycle with the discussion in s.
4.1 notice that wffll can be vied as an ”algebraic bidifferential operator”.

2. The Green formula and t}}De Bar construction. Let E' and E? be vector bundles over an
n-dimensional manifold X and E' — E? be a differential operator. Set V; := E*" ® A™. There are
canonical pairings

Io(X,E)®I'(X,V;) — R (<p,g®w)—>/x(<p,g)w

So one has the adjoint operator V; K V5. It is a differential operator of the same order as P uniquely
defined by the property (p1, P*ve) = (Pg1,v2).
Now suppose we have a sequence (not necessarily a complex) of differential operators

1 P

P P,
J ORIy HE NI N

Consider the sequence of adjoint differential operators
P p P
Vo e— V) & ... &£ W

Theorem 4.2 For any k there exists forms wn_g(wo; P1, .., Pr; vk) such that w,(p;1;v) := ¢ -v and

dwpn k(o5 P1, ..., Pi;vk) = wn—pr1(Pio; Po, ..., Pryvg)+

E

—1
(=1 fwp—4+1(00; Pryooy P 0 Pig1y ooy Pisvg) + (= 1) wn g1 (003 Pry ooy Pr—1; Piog)

i=1

3. How to compute the Green class. Let us call a D-module M ezcellent if the object *M is
concentrated in just one degree, i.e. H*(*M) = 0 for all ¢ but one. By the Roos theorem this degree is
—d . In this case set *M = H 9 (xM). Consider a locally free resolution of a D-module M:

P ={PF—. . P2 P! Pl
Let
*P* = {*(P%) — %(P') — #(P?) — ... — *(P")}[dx]
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be the dual complex. Then E® := Homp(P*®,C*(X)) is a complex of differential operators between
vector bundles:
g0 gt ey D ph

The adjoint complex
Py P, P
Vo= {(Vi 5= Vi — ... — W}

is canonically isomorphic to Homp(*P*,C>®(X))[—dx — k.
Suppose that a D-module M is excellent and admits a locally free resolution of the minimal possible
length k& = daq. (This usually happen in integral geometry). Then

Sol(M,C*(X)) = KerP; and Sol(¥M, D' (X)) = KerP;!
Therefore for any ¢y € KerP; and v, € KerP; one has dwy,_q,,(¢o; P*;vx) =0
Theorem 4.3 The cohomology class of the form wy,_q,,(o; P*;v) coincides with the Green class G pm(¢o; vk)-

Proof. It is similar to the proof of lemma (4.1). Since P~% is a locally free D-module, there is a

canonical element 1; in _ }
P~ @0 Homp(P~1, D) @ Q (25)

Namely, locally P~ =D ®c V, so (25) is
V @c V* @c D @0 Homp(D,D?) @ Q = End(V) @c D @0 D

and we take Idy ® 1®1. A 0-cycle in DR(P ®o+P) whose component in P®p*P ®p ) is Y 1; represents
the Green class.

5 General linear maps and natural linear maps between solu-
tion spaces

Denote by RHom(,-) the RHom with compact supports in the category of sheaves. For M,N €
D*(Dy) set
RHom$, (M, N) := RL.(X; RHomp, (M, N))

We will define a canonical morphism
RHom$,(xM1 B My, D'(X1 x X3))  © RHomp(My,C>(X1)) — (26)

RHomp(Ms, D'(Xs))[—n]

Any linear map
RHomp(Mi,C®(X1)) — RHomp(Maz, D' (Xs))[—n] (27)

continuous in an appropriate topology is given by a unique element in
RHom% (M1 ® M, D'(X; x X)) (28)

( this follows from lemma (5.1)), so the space (28) gives us the general linear maps (27). Our goal in this
paper is to construct and study an interesting subspace in (28), the subspace of natural linear maps.
To make more clear the relation with natural functionals we will spell the construction of the map
(26) using the Green class
Gm € H"™X(DRHAM @0 M)) (29)

and using the canonical morphism in D*(Dx)

im:Ox — xM®o, M (30)
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They are, of cource, equivalent. To clarify the main point we will start from the case when X5 is a point.
1. The canonical pairing via the Green class. Let Ax be the orientation sheaf of X. Set
D'(X):=D'(X) ®z Ax. We will define the canonical pairing

R'Hom$, (xM,D'(X)) ® R"""Homp, (M,C>(X)) — C

If A;, B; are sheaves on X, a € R"Hom(A;, Az) and b € RI Hom(By,B2) then the tensor product over C
provides an element

a®c b€ R Hom (A, ®c Bi, Ay @c Bo)

If A;, Bj are sheaves of O-modules on X we can make a tensor product over O:
a®obe R”jHom(Al ®o Bi, A2 ®0 B2)
Suppose X is a smooth variety over R of dimension n and
v € R'Hom§, (xM, D'(X)), f € R" "Homp, (M, C>(X))
Their tensor product over Ox is an element
v®o f € R"Homp, (M @0 M, D'(X) @0 C*(X)) (31)
So the multiplication m : D'(X) ®¢, C>°(X) — D'(X) leads to an element
m(v®e f) € R Homp, (xM @0 M, D'(X))

Applying this element to the Green class (29) we get a cohomology class
m(v@o f)(Ga) € HE(DR(D'(X)[n]) = H(X,C) = C

where X = X if X is orientable and it is a two fold covering given by the orientation class if it is not.

2. The canonical pairing via the morphism i,4.. Taking the Koszule resolution of the D-module
Ox we see that the complex of sheaves RHomp, (Ox, D’(X)) is canonically quasiisomorphic to the De
Rham complex of currents on X:

D'(X) -5 D'(X) @0, Ok 5 . -5 DI(X) @0, Q%1 -5 D/(X) ©0, %

(the last group sitting in degree n). If we take the RHom’s with compact support we get the De Rham
complex of currents with compact support.
There is the trace map given by integration over the fundamental class of X:

/ : R"Hom$, (Ox,D'(X)) — C
X

The composition of the morphism ix¢ (30) with the element m(v ®o f) (31) gives
moinm(v®e f) € R"Hom$, (Ox,D'(X))
Applying f y We get a pairing
U®f!—>/XmOiM(v®of) eC

Recall that there is the Grothendieck duality theory for topological vector spaces [Gr]. In particular
C*°(X) has a natural topology of a Fréchet nuclear space, and D{(X) has a natural topology of a dual to
a Fréchet nuclear space, so they are topologically dual. An immediate consequence of this is the following
simple duality lemma. (For a more general result see theorem 6.1 in [[KS]).
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Lemma 5.1 Suppose X is a smooth variety over R of dimension n. Then
R'Homp, (M,C>(X)) (32)
has a topology of a Fréchet nuclear space and
R""Hom$, (M, D'(X)) (33)
has a topology of a dual to a Fréchet nuclear space. The spaces (32) and (33) are dual to each other.

Proof. Consider first the classical case of a single differential operator. Let P be a differential operator
acting on smooth functions and P* the adjoint acting on the distributions with compact supports:

ce(x) L c=x)

Dp(x) £ Dy(x)

The canonical pairing boils down to the obvious duality between Ker P and the closure of Coker P*, and
the closure of Coker P and KerP*. The general statement for any M € D?(Dx) we get similarly taking
a locally projective resolution.

3. A construction of the map (26). Let RHom be the RHom with compact supports along
the factor X;. Choose

K € RHom$ (M1 K Mo, D'(X;1 x X5)) f € RHomp(My,C®(X1))

Their product K ®o,, [ over X; belongs to

RHom$ (*/vu Boy, M1 B Ms, D'(X1) ®oy, C(X1) K D'(Xg))
Using the multiplication map
mx, : D'(X1) ®0,, C*(X1) K D'(X,) — D'(X;) K D'(X,)
we get a class
mx, (K ®oy, f) € RHomg_ (*Ml B0y, My B My, D' (X;) K D’(Xg))
The canonical morphism ir, : Ox, — *Mi1 ®o, My provides an element

(mx, oim, ) (K ®oy, f) € Rﬂomcﬁxlxx2 ((’)X1 X Ms, D'(X,) |ZD/(X2))

Applying [ : R"Homf, (Ox,,D'(X1)) — C we get
K(f) € RHomp,, (M2, D'(X2))

4. Natural functionals. Recall that R"~" Hom°(C,Ax) = H,,(X,C) and the Poincare duality is
given by
Ix

R'Hom(C,C) ® R" "Hom*(C,Ax) — R"Hom*(C, Ax) ~%
The first arrow is the composition of Hom’s. Tensor product over C provides a canonical map
R'Hom®(C,Ax) ® R'Homp,(M,D'(X)) — R Hom*(M,D'(X))

Combining it with the canonical pairing we get a map

<.,.’.>M:
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H;y;(X,C)® R"Homp, (*M, D' (X)) ® R Homp, (M,C>®(X)) — C (34)

(
By definition the natural functionals on the space RI Homp (M, C* (X)) are the functionals < v,v,- >
provided by a homology class v € H;;(X,C) and v € R*Homp,, (xM, D'(X)).
5. Natural linear maps. There is a map

RFC(Xl, AXI) X HO’I”I’LD<*M1 X MQ,D/(Xl X Xg)) —

RHomS (M B My, D'(X; x X3))

So we get a canonical morphism
RT.(X1,Ax,) ® RHomp(xM; K Mo, D' (X x X3)) ® RHomp(M;,C®(X1)) —

RHomp(Maz, D'(X5))[—n] (35)

In particular it induces a map
Hivj(X1,Z) @ R Homp,  , (xM1 B My, D'(X1 x X2)) ® R Homp(M1,C™(X1)) —

RFHomp, (M2, D'(X3)) (36)

By definition a natural linear map
K, : R'Homp, (M;,C®(X;)) — RkHompx2 (Mo, D'(X3))
is given by a ”kernel”
K = K(z1,23) € R Homp, ., (xM1 My, D'(X1 x X5))

and v € Hi+j(X17Z).
6. Examples. Suppose M is an excellent Dx-module, m := dxq. Recall that *M := H ™ (*M) is
the dual system to M. Taking k =m, ¢ =0, [ = m we get

Homp(M,C>® (X)) ® Homp(*M,D'(X)) ® Hp(X,R) — R

Let G (-, ) be a cocycle in DR(*M ®¢ M) representing the Green class. Let f(z) be a smooth solution
of the system M. Choose a distributional solution v(z) of *M. Then we get a closed differential form
Gm(v(z), f(x)) of degree dpg on X. Choose a cycle v of dimension dyq in X. Then

<yu,f>= / Gp(o(z), f())

is a functional on smooth solutions of M.

Example 0. Suppose M = Dx. Then xM = DL [n] and *M = DL. Recall that Hom% (DL, D'(X)) =
Dy (X). We get the usual paring C*°(X) ® Dj(X) — C.

The following examples show a wider class of functionals on solution spaces then the natural func-
tionals we just defined above. The point is that sometimes we can integrate the differential form
Gr(v(z), f(z)) not only over cycles, but also over some chains (which do not represent a homology
class in general sense) still getting a functional on smooth solutions of a system M.

Example 1. Let M be a D-module on R” corresponding to the system x1-f = zo-f = ... =z, f =0,
0 <m <n. Then

RHom5(M,C®(X)) =0 for i#m
m sory)y - CT(X)
RHompz(M,C* (X)) = C=X) 27

and _
RHomr(M,D'(X))=0 for i#0

18



Homp (M, D'(X)) = 6(x1)6(x2)...0(x,) - D' (X)

So there is a natural pairing
RHomZ(M,C>(X)) @ Homp(Mi, D' (X)) — R

It should correspond to the case i = 0,5 = m, k = m. However H,,(R"™,R) = 0 in any topological sense.

Comparing the general and natural functionals. Let P be a differential operator on X. Recall that the
general functionals on KerP we get from the closure of Coker P*, see the proof of proposition (5.1). The
natural functionals we get in a different way. Take f € KerP and v € D'(X), v € KerP*. Notice that
if, for example, P is an operator with constant coefficients, then the restriction of KerP N D{(X) =0, so
it is essential that v is not necessarily compactly supported. Then make the Green class [w,,—1(v; P; f)]
and integrate it over a homology class [vy]. A simplest example is given in the example 2 below.

An advantage of natural functionals on KerP is that they correspond to ”functions”, i.e. elements of
the subspace KerP*, rather then to elements of the quotient C'oker P*.

Example 2. Let £, be the system (3", 2;0;, —a) f(z) = 0 on R"\0. Then *L, = L_,_,,. Consider
the following differential (n — 1)-form

on(z,dx) := Z(—l)i_lxidﬂcl Ao Ndxi A A dy, (37)
i=1

Then B
G, (v(z), f(x)) = v(x)f(x)on(z, dx)
Let v be an (n — 1)-cycle generating H,,_; (R™\0) . Then

/fzmx>-frx>on<x,dx> (38)

provides a nondegenerate pairing between the smooth solutions of £, and £_,_,,.
Example 3. Consider C" as a real manifold. Let £, 5 be the following system in C™\0:

(Z Zzazl - a)f(za 2) = 07 (Z 21‘621‘ - b)f(z7 2) =0
=1 =1
Then *L4p = L_q—pn,—p—n- Then

égu’b(v(z, z), f(2,2) =v(z,2) - f(2,2) - on(z,d2) A on(Z,dZ)

Let T’ be a chain intersecting any one dimensional subspace in C™ with multiplicity one. Then
JRCETEEACYEVPHEND (39)
r

provides a pairing between the solutions of £, p and £_ gy, —p—pn. However Ha,,_o(C"\0) = Hoy,_o(S?"7 1) =
0!

A chain T' can be considered as a discontinuous ”section ” of the Hopf bundle C"\0 — CP"~1. A
better way to think about this integral is the following. The form we integrate can be pushed down to
CP" 1, so we integrate over the fundamental cycle.

7. Composition of natural maps between smooth solution spaces. We can not define in
general a morphism

RHomp(My, D'(X1)) — RHomp(Ma, D'(X5))

using distributional kernels because of the lack of multiplication of distributions, and a priory there is no
way to compose operators

RHomp(M;,C>®(X1)) — RHomp(Maz, D'(X53))
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and
RHomp(Maz,C®(X3)) — RHomp(Ms3, D'(X3))

However the natural linear maps constructed using smooth kernels can be composed. Namely, suppose
Kis € RHomp(xM; KMo, C*(X; x X3)), ™1 € H,,(X1,R)
Ks3 € RHomp(x Mo B M3, C®(Xs x X3)), 72 € H,,(X2,R)
They define the corresponding natural maps
K13 : RHomp(M;y,C®(X1)) — RHomp(Maz, C>(X3))
K32 : RHomp(Maz, C®(X3)) — RHomp(Ms,C>(X3))
Their composition is given by the data
K3 0 K19 € RHomp (M K M3, C* (X1 x X3)), ™ € Hy,(X1,R)
where the kernel K93 0 K75 is constructed as follows. Let
Ao : X1 X Xox X3— X1 xXox X9 x X3
be the diagonal imbedding and 75 : X7 X X3 X X3 — X7 X X3 be the projection. Then
AR C®(X) x Xy X Xo x X3) = C%(X) x Xo x X3)[—dx,]

and
H|(X2,7) — R¥™2""Homp (12,0 (X1 x Xa x X3),C%°(X; x X3))

Therefore one has canonical morphism
H(X5,Z) — R~ Homp (19, A5'C® (X1 x X5 x X5 x X3),C%(X; x X3))
According to lemma 3.8 one has Gy € p.A'(M K xM). Therefore

1dRG A Rid
—

*M; K Ms Tou Ao (M1 B My R x My K Ms) (40)

There is a canonical map
RHomp(*M; B Ms, C*(X; X X5)) @ RHomp(xMg K M3, 0 (X3 x X3)) =
RHomp(xM; B My R+My B Ms, C(X) x Xa x Xy x X)) T2
RHomp(*M; B M3, C™(X; x X3))
provided by the morphism (40) and morphism
Yo € R72 Homp(ma, As'C™® (X1 x Xy x X x X3),C%®°(X] x X3))
Theorem 5.2 The kernel Koz o K1o coincides with (Gaqg X v2)(Ka3 ® Ki2).

Proof. Follows immediately from the definitions.
Example. Suppose M, are excellent Dyx,-modules. In this case usually the natural smooth kernels
are just functions
Klg(ﬁcl,l’g) € Homp(;/\/ll X MQ,COO(Xl X XQ))

and
K23($2,.’E3) S Homp(;./\/lg X M3,OOO(X1 X Xg))

and the composition is defined by the natural kernel

K13($1,$3)=/ GM2(K12($17$2)7K23(3327$3))

2

20



6 Natural linear maps for excellent D-modules.

1. The general scheme. Let M and N be excellent D-modules on manifolds X and Y, i.e. *M :=
(*M)[—dpm] is a D-module. Let cpq := codimSSM = dimX — daq. Then solutions

f € Homp(M,C>®(X)) and g€ Homp(3M,D'(X))

provide a homomorphism
cMm ~ f_®§ cmMm o0 / m dam e
o DR(*M ®0 M) ey DR(C (X) @0 D (X)) L HM D (X)

The Green class of M goes under this map to a cohomology class of degree daq on X. Recall that we put
DR(M) in degrees [—dimX, 0], while the smooth de Rham complex A®(X) is sitting in degrees [0, dimX].
Let us define a natural linear map

I: Sol(M,C=(X)) — Sol(N,D'(Y))

by a kernel
Ki(z,y) € SolGMRN,D'(X xY)) (41)

and a cycle yx of dimension dpq in X as follows. Let CJM(~, -) be a cocycle in the Cech complex of a
covering of of X with coefficients in DR(*M ®p M) representing the Green class. (In integral geometry
one may usually take a cocycle in the complex DR(*M ®o M)). Using solutions K;(z,y) of *M (where
y is considered as a parameter) and f(z) of M we get a closed differential form G (K (z,y), f(z)) of
degree dpq on X. Set

f(a) — / G (2, y), [(x)) € Sol(N, D'(Y) (42)

Under certain assumption on the wave front of the kernel K;(x,y), which we will assume below, the
integral over cycle v makes sense and the image of (41) lies in C*°(Y"). Then a (natural) inverse for I is
an integral transformation

J:  Sol(N,C®(Y)) — Sol(M,C>=(X))

Jip(@)— [ Ga(K(z,y),¢(y)) (43)

Y
defined via a certain dar-cycle vy in Y and a kernel

Kj(x,y) € Sol(MR*N,D'(X xY)) (44)
This data defines also a transformation

Jt: Sol(3M,C™ (X)) — Sol(FN,C®(Y))

g(@) — [ Gulg(a), Ks(z,y))

vx
There is a canonical map
<> mo0 Sol(GM,C (X)) ® Sol(M,C* (X)) ® Hg, (X, R) — R (45)
<G firx >m = : Gpmlg(@), f(2))
x
So if we choose a homology class 7x we get a pairing
<gf>m =<9, [,7x >m (46)

and a similar one for N.
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Theorem 6.1 (the Plancherel formula) . Let J be a natural inverse for I: J oI = idx. Then for
f € Sol(M,C>*(X)),g € Sol(xM,C>(X)) one has

<g?f7’7X >M = <thalfa'7Y >N

Proof. <g,f,vx >m = <g,Jolf, vy >n. So the theorem follows from
Lemma 6.2 Let ¢ € Sol(N,C>®(Y)) and g € Sol(:M,C>(X)). Then

<gv‘]§077X >M = <Jt97<P»7Y >N (47)

_ Proof. The Green class is multiplicative with respect to the X - product. So we can set GMgN =
G X Gar. Consider the following solutions

g(z) K o(y) € Sol(GM K *N,C*(X x Y))
Kj(z,y) € SO(MRN,D'(X xY))

They are solutions to the dual systems. So there is a pairing

<g(x)Ro(y), Ki(z,y), 7x X 7y >MRN

We can evaluate it computing first the pairing along X and then along Y. In this case we get the
right-hand side of (47). Computing first pairing along Y and then along X we get the left-hand side of
(47).

The kernel K ; is a much more simple (and fundamental) object then the actual integral transformation
J. The reasons are the following:

1) The kernel K is a canonically defined distribution, while the formula for Jp(z) depends on a
cocycle G representing the Green class.

2) Explicit calculation of cocycle Gy can be a nontrivial problem and so the final formula for the
right-hand side of (43) could be quite complicated even for a very simple kernel K ;.

So the problem of inversion of the transformation I splits on 3 steps:

Step 1. Find a distribution (44).

Step 2. Compute a cocycle G for the Green class.

Step 3. Find a cycle vy .

The distribution (44) should be uniquely defined if exist. However it may not exist. The Green class
always exist. Different cocycles representing it together with different choices of cycles vy provides the
diversity of concrete inversion formulas. I will demonstrate below how this general scheme works in the
simplest concrete problems.

2. The Fourier transform of homogeneous functions and the Radon transform. As every-
body knows the Fourier transform in an n-dimensional real vector space V,, is defined by the formula

SW) — SV fla) — F©) = [ fpeeed

The inverse operator is f(§) — [ f(&)e™2m<24>¢dn¢. Using the Plancherel formula one can define the
Fourier transform of generalized functions.

Let &5 (RP"~1) (resp. @, (RP" 1)) be space of even (resp. odd) smooth homogeneous functions f(z)
on R™\0 of degree \: f(ax) = |a|*f(z),a > 0. Also let ¥, (V;,) be the space of homogeneous distribution
of degree A in V,,, and W, (V,,) = U (V,,) & ¥} (V,,) is the decomposition on even and odd parts.

Then ®,(RP""1) C ¥,(V,,). This inclusion is not an isomorphism for integral A = —k, k& > n. One
has

U_ (V)@ (RP" 1) = S¥="(V},) = {6 — functions of degree —k at 0}

The Fourier transform of generalized functions provides an isomorphism

-7:_>\ : \IJj_:A_n(Vn) - \I’f(Vé)
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Restricting to ®*,  (RP™') we get a map

—n
Fa: @5, (RP"!) — &F((RP™))

It is remarkable that there is another way to define the operator Fy. Let me recall that the space
of homogeneous degree A\ generalized function on R is 2-dimensional and splits on the even and odd
components (with respect to the involution £ — —z) generated by

|z |z[*sgnz
LAy 2 e
(%37) (%37

They are both analytic on A on the whole complex plane. One has

2t (=1)"k!

ok = L5CR) (o : 48
e I ()
|z[*sgna (=1)F(k = 1)! (2k—1)
ek = -0 (z) (49)
[(342) (2k —1)!
Let v,—1 be a cycle generating H,,_1(R™\0;Z). The kernel
=+ o | < vf,lL’ > ‘)\
K)\ (571') T P()\;_l)

and the cycle 7,1 defines the operator

If o @, ,(RP") — @\ (RP™YY)

1 | < &>

I f(z) — 7/ flz)—=——on(z,dx)
A 2 Yn—1 F(%)

The odd kernel

_|<§,x>|/\-sgn(<§,x>)

K5 (6.): Fae,

defines an integral transformation

(I F)(€) = / @)K (€, 2)on(x, da)

Tn—1

Proposition 6.3 Fy =7!/2P\T(F) - I, Fy =i n'/2A0(R) - 15 .

>t f (iL‘) o 7T>\/2 |$‘>\ (.’1?) A2 |$|)‘8gn(x)
T ey T e
Lemma 6.4
F(fa(z)) = f-1-x(8),  Flor(z)) =i-g-1-1(8) (50)
Proof. See p. 173 in [GS] for an equivalent formula.
Proof of the proposition. Using the polar coordinates z = r - s where s € S"71 |s| = 1, we

have d"z = r"~'drds,,—1 where ds,,_; is the standard volume form on the unit sphere in R™. Then for
f(z) € ®_\_,(RP"1) we have

, 1 [ ,
2mi<E, x> gn _ - —A—n 2mir-(§,s),.n—1 _
= el =
flx)e d"x / 7| e T dr/ fle)ds
R™ 2 —o0 Sn—1

1 at1/2 - / |< &> a-1/2 =X .
— I'(— ———ds,_ = I'(—)I
2" %) ). 1@ r(ay " (IS

The proof in the case of odd functions is completely similar.
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Corollary 6.5

It olf=—" . 1d
D(FHT(A4")
,n_n
I7,_,oly =— —.1d
D(FC(*5")

In particularly using (48) we see that I_; is just a projectively invariant version of the Radon trans-
form:
I ) = | [f@)(< &z >)omp(x,dr)
’Y’VTI,

and the inversion formula looks as follows. When n is even

(-1

2om)2 FO8" (< &y >)an(§, dE)

Yn—1

fly) =

When n is odd
(=) (n - 2)!

2(2m)n—1

) = / FO)(< 1y >) "o (€. de)

The operator fA_n is defined on the space of all homogeneous degree A\ functions. However it is zero
on the subspace of odd functions. The reason is this. A sphere in R™\0 representing the generator in
H,_1(R™\0) has canonical coorientation ”out of the origin”. The involution & — —z preserves it. So it
acts on the class 7,_1 in the same way as it acts on the orientation class of R™ and hence on the form
On—1(x,dz): by multiplication by (—1)". So if f(z) is an odd function the integral fﬂyni1 f(z)on (&, dE)
vanish because the contributions of the opposite parts of the sphere cancel each other.

From our point of view these results looks as follows. Let

L,\ = Zn:xlaxi - A
i=1

be the Euler operator. Denote the corresponding D-module by £). Then ®,(RP"!) is the space of
smooth even solutions of L.
It follows from lemma (4.1) that xLy = £_x_,[1] and the Green class of £, is

GEA (Sﬁ;v) =p-v- O'n(fE,diﬂ)
So pairing (46) looks in this case as follows:

P\(RP" )@ ®, y(RP"!) —R

f(2) ® g(2) — / F(@)g(@)on(x, dz)

Yn—1
Notice that N
Ki(x,€) € Sol (f,A X Ly, D' (R™\0 x R”\O)) (51)
One has L) = *L_)_,, so the integral transformation If\t is just the natural linear map provided by the

kernel (51).
3. The complex space. Let A and p be complex numbers such that n := A — p is an integer. Let

Oru(CP™):={f | flaz,az)=a’a"f(z2)}
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be the space of smooth homogeneous function in C™*1\0 of the bidegree A, . Consider the kernel

<& >No< €T >H

K;C\(xag) = F(s+‘n|+2)
2

where s = X\ 4 u. It is a homogeneous generalized function. It defines an integral transformation

1N, P amme1,—p—m—1(CP™) — @5 ,((CP™)")

f(z,2) — F(2,2) K5 (2,€)0m(2,dz) A om(Z,dZ)
cpm

Here the integral has the following meaning. The form we integrate can be pushed down to CP™, so we
integrate over the fundamental cycle. One has (see [GGV]).

T(—1 k+1+1 i\
K;(\:(Z, §)|>\=—k—1,u=—l—1 = %5’6’1(27 Z)

where j = min(k,l). In particularly applying the above results to the case k = 0,1 = 0 we come to the
Radon transform of smooth homogeneous functions of degree (—m, —m) in CP™:

IS @, _pn(CP™) — &_; _4((CP™))

(InH)E) = f(&) = (i/2" f(@)d(< & x >)om(x, dx) N om (T, dT)

cpm
The projectively invariant inversion formula is

SN w) = &, / FOFM1m1) (< €,y ) (€, dE) A 0 (€, dE)
cpm

where c§ = (=1)™" (m — 1)!(7)"2™+2(i/2)™.

7 Integral geometry on the family of spheres

1. The integral transformation. Let
S™={a? + ..+ a2, —Th o =0}/R*

be a sphere in RP™*1. The stereographic projection identifies the family of its hyperplane sections with
the family of all spheres in R™.

Let Qe = {23 + ...+ 22,1 — 22,9 = 0} be a cone in R™*2\0. It has two connected components:
Q;H in the half space x,,,2 > 0 and its opposite Q,, ;-

Denote by ®,(S™) the space of all smooth homogeneous functions of degree A on the cone Q' 41 Let
SO(m+1,1)¢ be the connected component of unity of the group O(m+1,1). It acts on the cone Q;H.

Let (,, be a hyperplane section of Q:,rl 41 which is isomorphic to a sphere. The orientation of R™+2
provides an orientation of (,,: the cycle 3, is cooriented out of the origin in the cone, and the cone
itself coorientated outside of the convex component in R™*2. Let ;. be an oriented this way cycle. Its
homology class is a generator of H,,(Q; 1 Z).

Lemma 7.1 There is a nondegenerate SO(m + 1,1)g - invariant pairing
<e>gm: Doy (SM) @ PA(S™) — R
defined by the formula

< f,g >sm:= o 5(95% +.t m?nJrl - 1’3n+2)f(39)9(55)0m+2(1’7 dx)
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Here we integrate the closed m-form on Q; +1- By definition it is the restriction to QF 41 of any form
a,, satisfying the condition

d(x% +ot x72n+1 - x72n+2) N Q= f(x)g(x)aerZ(xv d$)

The restriction is well defined on Q.
Proof. The SO(m + 1,1) - invariance is obvious.
Let &1, ..., Emaa2 be coordinates in (R™*2) dual to x; and < &,z >= > &x;. Consider the kernel

| <&z >

Kj(f,x) = F(M)

(52)

Set
m—+2

N=0F 4.+ —0¢ i Ly:i=) &0 — A
Let us denote by M the D-module on R™*? corresponding to the system
My Lyf=0, (zi+..42},—20)f=0
and by N the D-module on (R™*2)’corresponding to the system of differential equations
Ny Lyp=0, Ap=0

Then )
K}J\r(g’ (E) € Sol (M)\ &N)\’D'(Rm+2 % (Rm+2)/))

is an even solution of this system. Notice that My = *M__,,. So the kernel K (¢,z) defines an
operator

It @y (S™) — Sol(N3)F (53)

(I 1)(E) = o O(af + oo+ a1 = Ty (@) KX (6, 2)0mo2(2, da)

Consider the following domain:

To:={&I&G + ... + Erir — Epyn =0} Iyo= {15 + ... + &1 > &yl

Remark. The functions I)j\[ f(€) are a priory smooth only in the complement to the cone Ty. Indeed,
the integral transform I ;r, for instance, is written in affine coordinates as

<& x>+s]
BN = [ 0 mmn)ilot ot ot - DS
where £ = (¢/,s) and < &',z >= > &uz;. Set & =1,& =0 for i > 1. Then
xy + s
L0, 008) = [ Fon)! UH‘ day

where f (1) := [ f(z xl+...+mfn+1—1)dﬂc2...dmm+1. The function f(xl) vanishes outside of the segment
-1,1], smooth inside of it but not smooth near zq = +1. The integral [ |z|*f(z)dz is regularized near
x = 0 in assumption that the function f(x) is smooth near zero.
Similarly the kernel
| < &x >N sgn(< &z >)
L(25%)

Ky (&) =
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is an odd solution of the system M K AN,. It defines an intertwiner operator for the group O(m + 1,1):
Iy : @50y (S™) — Sol(Ny) 75

Notice that

+
T (S™) = Sol (MA Rm+2\0; COO(Rm“\O))

So the operators Iff are natural linear operators between smooth solution spaces.
In this chapter we will work with the restriction of the functions I/j\E to the domain I'1. Our first goal

is to invert the operator
If t Dy (ST — Sol(J\/}\|fl)i;

2. The Green class. Now we make the crucial step. Consider the following m-form:
wm (p;v) = (54)
> (—1)”1’—1(& €5 g, —vg, ) =& Ei(v - g, — v, -so))dfl A el N démyn
1<i<j<m+2
Here 40 = —1 and €, = 1 if j # m + 2. Let wp41(p; A;v) be the Green form for the Laplacian A:
Wint1(p; Asv) = Z (1) e (e, - v — @ - ve, )dEr A € N dE o (55)
1<j<m+2

Then (54) is the contraction of the Green form (55) with the Euler vector field L:

1.
wm(p;v) = —§szm+1(<p;A;v)

Remark. More generally, for any homogeneous differential operator P with constant coefficients in
R™ the Green form for the system Pf =0, Lo f = 0 is equal to —3irwy—1(; A;v).
It can be also written as follows:

0 0
Wm(%”) = [5”78 : 87907(157 7d§] - [55075 : 707d€7 7d£]

3 23
Here [£v, e - 6%@, dg, ..., d€] means the determinant of the following matrix:
&v RIS e .. d&
521) Eg @52 d§2 d£2
Ema2V  Emao 90/5%2 démao - Ao

Lemma 7.2 The form wy,(p;v) can be pushed down to T

Proof. An easy calculation.

Theorem 7.3 a) N, = *N;, where a +b+m = 0.
b) The form wy,(p;v) represents the Green class G, (p;v) of the system Nj.

Corollary 7.4 The form w,,(p;v) is closed if the functions ¢ and v satisfy the following systems of
differential equations:

Lop=0, Ap=0 and Lyw =0, Av=0 where a+b+m=0.
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In the rest of this chapter we will use extensively this corollary (but not the fact that w,,(p;v)
represents the Green class). So let me first give a straightforward proof independent of the proof of
theorem (7.3).

Proof. One has

dwm(vip) = Y (=17 (if(v “Ap — Av-p)—

1<j<m+2
€ Lom1(v- g, —vg, - <p))d§1 A e NdEGA o A i
Indeed, applying (%dgj t0 wn—2(v; ) we get

- ” ” 0 ’ ’
Z (_1)J ' (fj(u “Pee T Ve SD) B &'8765]' . (U “Pe; TP Ufj)_

1<i<j<m—+2

—(J—Dej- (v, —¢- vgj))dél A A dgj Ao NdE o
Similarly we compute the contribution of a%jdfj and take the sum.

Proof of theorem (7.3). Consider a complex of D - modules D 4.p2 4 p sitting in degrees
[-2,0] (d has degree +1) which we visualize as:

D
A e
D D
“La_a \ /A
D

One has [L,, A] = —2A, 530 AL_; + (—L_3)A =0, i.e. we get a complex.

This is a resolution of the D- module N,. Indeed, consider a filtration on D such that the degree
of z and % is +1. Then both L, and A have degree +2. Shifting the filtration in the second term of
the resolution down by 2 and in the third down by 4 we get a filtered complex. The associated graded
quotient complex is a Koszul resolution. So our complex is also a resolution. The part a) follows easyly
from this..

To calculate the Green class we use theorem (??) for this resolution. The complex *P*® := Homp(P*®, D?)[m+
2] is concentrated in degrees [—(m + 2), —m] and looks as follows:

fDﬂ
A \Lz
'DQ DQ
—L:_, '\ VN
DQ

A homomorphism of D-modules Dx — C*°(X) is determined by its value at 1 € Dx. So one can
represent the complex Homp(P*®, C*(R™*2)) by the following picture where ¢g, 1, ¢}, p2 are the values
of the corresponding homomorphisms at 1:

®1
&/ NFe
P2 %0
“Laz N A
¥1

28



Similary one can make a picture for Homp (xP*, O (R™*2)):

Um+1
t
A /l \La
Um Um+2
Lt o, N\ N
!
Um+1

Recall that Homp (D, C>(X)) = A™(X). So v's are forms of top degree. Then
(a0 - Omi1 = 90 - Livmi1) + (g0 - Uppr — 0+ Avpyy) =

!’
Awm+1(905 Vm41, Uy 1)

and , /
(ASOI *Um — @1 Avm) + ((_La—2)901 *Um — @1 (_La—Q)tvm) =
dwmt1(¢1, 13 0m)
where )
Win+1(905 Vm415Vmi1) = Q0 - Umt10m+2(&, dE)+
2 Opy 8v;n+1 i1 -
> al( Se i 0 5)7&)(—1) €L A e NdEA oo A dEmso
and ) ,
wm+1(<p1a ¥15 Um) =P Umo'm+2(§ad§)+
m—+2
1 ovy, ie1 A
Further,

Win41(90; AV, =LY _5vm) + w1 (Lao, Apo; V) = dwpm (905 vm)

where wp, (¢;v) is the Green form (54).
3. Construction of the inverse operator. We have defined in s. 7.1 the domain I'y = {£ 4 ... +
21> & o) Let Iy = f‘l/Rj be the manifold of all oriented rays inside I';. Its closure ' = [y UT
parametrizes oriented hyperplane sections of the sphere S™ (here I'g = Ty /R%).

I = S™t\D, UD_ where Dy is a ball {¢f + ... + &2, < &2, ,}/(R*)T and D_ = —D,. Therefore
H,,(T',Z) = Z. Consider the cycle ~,, of rays in the hyperplane &, 2 = 0. It is cooriented by the function
&mi2 (or, more invariantly, by the choice of one of the balls D). So orientation of R™*2 provides an
orientation of the cycle. Denote by v, the oriented this way cycle. Its homology class is a generator of
H,((T,7).

There is a nondegenerate pairing

<>yt Sol(NA)T@SolN_x_m)” — Ry < p,v >p = /+ wim (¢, v)

m

Remark. This pairing would have being zero if ¢ and v have the same parity. Indeed, in this case
the involution ¢ — —¢& multiplies the form w,,(p,v) by (—1)™*2 and the cycle 7, by (—1)™*1, so the
contributions to the integral coming from the antipodal parts of the cycle are canceled.

Let K be a compact hypersurface in T'. Tts homology class [K] € H,(T) is equal to d(K) - [y4;]. The
integer d(K) is the intersection number of the class [K] with the cycle consisting of all oriented spheres
passing through a given point x € S™ and tangent to a given hyperplane in 7, 5™.
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According to part a) of theorem (7.3) *N) = N_,,_x. So by the general philosophy the kernel
K (&, ) define integral operators

J¥ 8ol (NCa—m) T — @A(S™) (56)

1 _
(00O =5 [ wmlei K3 (€.)
K
and similarly the even kernel K, (£, z) provides operators
Jy 2 Solgee (Nox—m)™ — ©A(S™)

Notice that J;' is defined by an odd kernel, and J; by an even kernel.
Further, there are operators

(JE _ )@y (S™) — Solgee (N_x—m)T

—A—m

(JE5_)'(9) = o O(2F + oo+ Ty — T p2)g(0) KT (2, )0 42(2, d)
Theorem 7.5 a) These operators are intertwiners for the group SO(m + 1,1)o.
b) For any m-cycle K € T one has

d(K)- < f,g >sm=c(}) / Wi (Iff; (Ji_m)tg)

K

where )
ot

T e

¢) In particular d(K) - J*,_oIf =¢(\) - Id.

The part b) can be viewed as the universal form of the Plancherel theorem for the integral transfor-
mation [ /\i

Proof. a) The operator J /\i is an intertwiner for the following three reasons.

1. A group element g € SO(m + 1,1) sends form w,,(p,v) to the form wy,(g- ¢, g - v). Indeed, the
form w,, is a cocycle representing the Green class for the system N),. This system as well as the volume
form in R™*? is invariant under the action of the group SO(m + 1,1),.

2. A connected Lie group acts trivially on the homology.

In the definition of the inverse operator J; we can integrate over an m-cycle K C (R™*+2) projecting
to K. So J)j\[ apriory defined for any smooth function ¢(§). However it commutes with the group action
only on the subspace Sol(Ny, C>(R™+2)). Indeed, g moves the cycle K to a different cycle K homologous
to the initial one. To compare the integrals we use the Stokes formula for the form wy,(¢; K (&€, )). The
integrals will be the same only if the form is closed. This happened only if p(£) € Solge (Ny).

b). Let n=(0:..:0:1:1) be the “North pole”in S™. The variety I',, parametrizing the hyperplane
sections of the sphere S™ passing through the point n is a hyperplane given by equation &, 11 +&n42 = 0.

It is sufficient to prove these formulas for one cycle K. Let m, : (x1, .., Tmi2) = (L1, s T, Tint1 —
Tm+2) be the projection along the line n. Set Z := (x1,..,.Tm), UV := Tyg1 — Tmt2. Assume that
f € ®,(S™) vanishes near the line n. Then 7, identifies f|Q:l+2 with a function ¢(Z,v) := f(Z,v, — (23 +

... + 22))/v) on the hyperplane z,, 12 = 0, which vanish at v < g, ¢ > 0. Let o, := m,(v,;). The
restriction of I} f(€) to &mi1 + Emte = 0 can be written as

(—1)™ / 0(F,0) [€2 + v (Emir — Emya) /2]

v L(33)

Om+1(Z,0)

m

This and the following lemma shows that for K = T',, part b) reduces to the Plancherel theorem and
the inversion formula for the generalized Radon transform in the projective space (see s. 6.2-6.3). Set

§ = (€15 §mt1)-

30



Lemma 7.6 . The restriction of the form wy,(¢;v) to Ty, is equal to

wm(w; ’U)‘Fn = (_l)erl (U : (8§7n+1 - 8§m+2)90 — P (a§m+1 - a§m+2)v) O'm+1(£lv dgl)

Integrating by parts we get 2 (—=1)"¢ - (O¢,.., — O¢,10)VOm41(§, dE)

4. An example: the Radon transform along the hyperplane sections of a sphere .

generalized functions (52) has no poles on A. One has

—1)*k!
K7 p41) (&) = ((2111)! (< & >);

(_1)k(k — 1)! -5(2k_1)(

K, (&) = 2k = 1)1 <& x>)
_ 1\kok
Ky (6 x) = W <&w>TH
(—1)k2k /@ —2k—1

Kok (&2) = g = <&o>
So we get the following integral transformation. For f € ®;_,,(S™) set
If(8) = o 8z} + o Ty — T 2) f(2)0(< & 2 >) o, da)
The function I f(&) is zero outside I'. Consider the following kernel:
K_(m-1( )= §m=2(< g, x>) foroddm and < & x>V for even m
It defines an integral transformation acting on g € ®_1(S™):
(J9g(€) = - 82 + o Ty — T 2) () K () (< & 2 >) 0o (2, d)

Theorem 7.7 a) For any m-cycle K € T one has

d(K) <fvg >Sm:Cm~/

K

wm(If; th)

_1)("1*1)/2
where —Cm = W

b) In particular

for odd m and % for even m.

d(K) - f(a) =cn- [

K

o (Tf5 Ky (€,2)

So the inversion formula is local for odd m and nonlocal for even m.
Theorem (7.7) is a special case of theorem (7.5).
The inverse operator J provided by the kernel K_,,_1)(&,x) looks as follows:

GO = [ 3 0 (€6, - g < g )=

1<i<j<n

(Eitpe, — &0 )0 D (< € >)>d§1 A NdEA . NdEG A . N dE,
for odd m and

(—1)" 7 (p(€) (s — i) < w > —

1<i<j<n

(o)) = [

K
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(e, — &ive) < &0 >~V VG A A dE A AdEg A A dE

for even m.
5. Admissible families of spheres. Restricting the integral operator I/\jE to a family K of oriented
spheres we get an integral transformation

Lig : ®a(S™) — UE, L (K)

A priory the restriction of the form wy,(y;v) to a hypersurface K depends not only on the restriction
of the functions ¢ and v on K, but on their first derivatives in the normal direction to K. Therefore for
general K the right hand side of (57) can not be computed if know only Ii[ x(f). So it does not give an

inversion formula for the integral transformation I )j\: e

Definition 7.8 A hypersurfaces K C T is called admissible if the restriction of the form wpm(¢;v) to K
depends only on the restrictions of smooth solutions ¢ € Solge(Ny), v € Solge=(N}) to K.

This means that there exists a bidifferential operator
v:C®(K)®? — A™(K) such that for any ¢,v as above Wy (9;v)|K = v(o|K,v|K)-

It is worth to compare this definition of admissibility with the one usually used in integral geometry,
see [G3].

Let C' be a submanifold in S™. Consider the family I'c of oriented hyperplane sections of the sphere
S™ tangent to C. For example if C' is a point then d(I'¢) = 1.

Lemma 7.9 For any C C S™ the hypersurface I'c is admissible.

Proof. For C' = n this follows from the lemma (7.6). Indeed, the vector field (0, ., — O,..,) is
tangent to the hyperplane I',.

In general we proceed as follows. The form w,,(p;v) is given by a bidifferential operator of first
order (see (54)), so its restriction to K is determined by the restriction of the functions ¢ and v to the
1-st infinitesimal neighborhood of K. Let n € I'c and t(n) be the tangency point of the hyperplane
< n,z >= 0 with C. Then the tangent space to I'x at a point ¢(n) coincides with Ty -

6. Inversion of the integral transform related to an admissible family. The restriction of
the form wm(I)j\E(f); K (& x)) to Te depends only I3 F f- So one can expect the inversion formula

AT (@) =) | wn (1) KT (6,2) (59)

I'c

similar to (57). However the cycle I'c lies in the closure T' of Ty, while the function I (f) was well
defined only inside of Tg. For the same reason the form w,, (I (f); K (£,2)) is closed only inside of I'g
(and outside of T ). So it is a priory unclear whether the formula makes sense and is it possible to use
the Stokes theorem.

To avoid this trouble we consider the integral transformation Iy a.r. only on the subspace Cc (8™, C)
of the functions vanishing in a very small neighborhood of the subvarlety Cin S™.

Let C' € I be the subvariety of spheres of radius zero with center at points of C. Let \I/f(l“c; é) be
the subspace of \Ilf(Fc) consisting of functions smooth near C'. Then I/\i f is smooth in a neighborhood
of C. So we get an integral transformation

Iyp, i@ 5 m(S™,C) — U5 (Te: 0)

Now we may apply the Stokes formula near C. Assuming this let us perturbate the cycle I'c near
the boundary of I' by moving it a little bit inside of I'. Geometrically this means that we replace small
spheres tangent to C by close to them small spheres which are not tangent to C.

Remarks. 1. The cycle K becomes homologous to 0 in the sphere S™*! parametrizing all oriented
hyperplanes.
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2. One can deform smoothly the cycle K out of the domain I'. However doing this we must cross all
the points of the boundary I'y of I'. Therefore we can not use the Stokes formula to compare

[on(BE@rRTE) ad [ (B0 K7€)

where K is inside I'g and K’ outside I'. This is very natural: otherwise we would prove that they are
equal, and so equal to zero since the cycle K’ is homologous to zero in the complement to I

So we can reduce the investigation of the integral to the study of a similar integral over a cycle K
inside I'y, which was done above. Therefore we come to the following conclusion:

Theorem 7.10 For an admissible family I'c the operator JAi provides an operator
JAi,Fc : \ij(FCW é) — (I)—A—m(sm, 0)

such that
¢(\) - Iy, o Jap, = d(K) - Id

7. Geometry of the family of spheres. The group SO(m + 1,1) acts on the family of all spheres
in S™. A remarkable fact is that a bigger symmetry group, SO(m + 1,2), acts as a group of contact
transformations on the family of all spheres (including the points, which are spheres of zero radius!).

Namely, let

Xng1 = {NF + o + W1 — Moryo — Mgz = O} /R

be the m + 1-dimensional quadric of signature (m + 1,2). Its affine part 7,43 # 0 is isomorphic to the
hyperboloid T'g = {& +... + &2, — &2, = 1}. The complement to the affine part is the projectivization
of the cone {& + ... + &2, 11 — 2440 = 0}, ie. it is a sphere {& + ... + &2, .1 = 1}. The quadric X,,,41
parametrizes all oriented hyperplane sections of the sphere S™. The hyperboloid I'y parametrizes all
oriented spheres of non zero radius.

Let A C 8™ x X,,41 be the incidence subvariety. Consider the double bundle corresponding to this
family and its symplectization:

A NA(S™ X Xpt1)

P/ \ P2 T/ N\ T2
sm po T*5m T* X1

Let
Y= 7T2(NZ(Sm X Xm+1)) C T*Xm+1

Then X¢ := T¢ X, 41 N X is a nondegenerate quadratic cone in the cotangent bundle to §. This cone is
dual to the cone in the tangent space to the quadric at the point £ given by intersection of the quadric
with the hyperplane in the projective space tangent to the quadric at &.

The hypersurface ¥ is foliated on curves: bicharacteristics. This foliation is invariant under the action
of the multiplicative group R* on 7% X, 1.

Lemma 7.11 a) Projection along the bicharaceristics gives the R* equivariant fibration
TS (E\ {zero section}) — (T*Sm\ {zero section})

b) The projection of a bicharacteristic to X,,+1 consists of all spheres tangent to a given hyperplane
at a given point.
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So the manifold of all bicharacteristics is identified with the projectivization of the cotangent bunlde to
S,
Geometrically P(X\ {zero section}) is the set of all pairs

{ a contact element h at a point x € S™ | a sphere tangent to h at x }

The group SO(m+1,2) acts on X,,+1 and hence on ¥. Thanks to the lemma the group SO(m+1, 2)
acts as a group of homogeneous symplectomorphisms on 7%S™. It preserves the family of homogeneous
Lagrangian subvarieties given by the conormal bundles to spheres (including the spheres of zero radius).

8. The Hamilton-Jacoby method for description of admissible families of spheres. A
hypersurface K’ C X,,,41 is characteristic if its conormal bundle in X, 1 is contained in ¥, i.e. for any
nonsingular £ € K’ the tangent plane Tz K’ is tangent to the “light cone” YE CTe Xt

Proposition 7.12 An irreducible hypersurface K' C X,,41 is admissible if and only if it is characteristic.

Proof. We already proved in lemma (7.9) that if K’ is characteristic then it is admissible. Let us
prove the converse statement. Since wy,(v;v) is given by a bidifferential operator of order (1,1) it is
enough to check that the restriction of the differential form w,,(p;v) to any noncharacteristic hyperplane
does depend on the derivatives of ¢ and v in the direction transversal to this hyperplane. The group
SO(m + 1,1) acts transitively on the variety of noncharacteristic hyperplanes in the tangent spaces
T¢Xym+1- So it is sufficient to check the statement above for the hyperplane &,,+2 = 0. One has

b0 = D (UG (0 = v L, 9)AE A dEi A dia

1<i<m+1

wm(p;v)

The proposition follows.
The following lemma is well known

Lemma 7.13 Any algebraic irreducible homogeneous Lagrangian subvariety in T* X is isomorphis to the
conormal bundle to an algebraic irreducible subvariety Y C X

Theorem 7.14 Any admissible hypersurface in I' is a piece of a hypersurface 'c for a certain C C S™.

Proof. We may assume that K’ is irreducible. According to proposition (7.12) Nj., X411 is a
Lagrangian subvariety in 3, so my; it projects it down to a Lagrangian subvariety in 7%S™, which by the
above lemma must have form N5S™.

8 Holonomic kernels and their composition: the bicategory of
D-modules

1. Motivations. As we emphasized before the composition of natural linear maps defined by distribu-
tional kernels not always exists. However when it is defined we come to the problem of computation of
the composition. Many important problems of analysis can be considered as special cases of this one.
For instance in integral geometry both the integral transformation and its inverse should be treated as
natural linear maps between solution spaces of D-modules, so to invert an integral transformation we
should be able to compute the composition of natural linear maps.

Let us assume for a moment that M, are excellent D-modules. Then usually the natural kernels
are distributions satisfying holonomic system of differential equations. This means that the image of
homomorphism

*Mi R My — D'(X; x X3) (59)

provided by the kernel
Klg(l‘l,l‘g) € Homp (;Ml X MQ,D/(Xl X X2))
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Q12

is a holonomic D-module. Let us denote it by K12 and by *M 1KMo — K15 the corresponding morphism
of D-modules. So (59) is a composition

FM R My 23 Kig — D'(X1 x Xo)
The idea to keep only the first arrow suggests the following definition
Definition 8.1 A holonomic kernel on Xy x Xa is a collection (Mq, Ma, K12; ) where
My € D¢y (Dx,),  Ma € Dgoyy(Dx,), Kz € D oy(Dxyxx)

and
S RHomDX1Xx2 (*Ml &Mz,lclz)

A holonomic kernel is a finer algebraic version of a holonomic distribution on X; x X5 then the
D-module which this distribution satisfies.

Example. Suppose that M; = Dx, for i = 1,2. Then *Dx, = Dx, and Dx, X Dx, = Dx,xx,-
Morphisms of D-modules Dx, xx, — K are defined by their value on the generating section 1 and
correspond just to the sections of Kis.

For instance, if X; = Xy = A! and K3 is the D-module of delta functions on the diagonal the
morphisms above correspond to sections f(z)d® (z — y).

It seems that the notion of a bicategory is the appropriate language to discuss the holonomic kernels
and their composition.

2. Bicategories. A complete definition of (lax) bicategory see in [Be] or p.200 [KV]. In particular a
notion of bicategory C includes the following data:

a set ObC of objects;

for any 2 objects a set of 1-morphisms from A to B;

for any two l-morphisms a1, as between A and B a set of 2-morphisms between a; and as.

For any 2 objects Ay and As of a bicategory there is a category Mori(A;, As) of 1-morphisms from
Aj to Ay. The objects in this category are 1-morphisms from A; to As; the morphisms between given
two 1-morphisms from A; to Ay are given by the 2-morphisms between these 1-morphisms.

The composition of 1-morphisms provides a bifunctor

MOTl(Al,AQ) X MOTl(AQ,Ag) — MO’/‘l(Al,Ag)

The archetypal example is the bicategory of all categories. Its objects are categories and for any two
categories A and B the category Morq (A, B) is the category of functors from A to B.

3. A bicategory of D-modules. Below we work in the derived category. In particular all morphisms
are morphisms in the derived category.

The objects of the bicategory are pairs (X, M) where X is an algebraic variety over a field k (char
k=0)and M € D?, (Dx).

By definition 1-morphisms between the 2 objects (X, M) and (Y, ') are holonomic kernels
*sMERN 2 K

It is the composition of 1-morphisms which makes the whole story relevant to integral geometry.
Roughly speaking it answers to the question “what system of differential equations satisfies the kernel of
the composition of 2 natural maps ?” and motivated by s. 5.7 above.

Let Ag @ X7 X Xox X3 — X7 x X9 x X5 X X3 be the diagonal embedding of X5 and 75 : X7 X Xo x X3 —
X1 x X3 be the projection. Consider the objects (X;, M;) where i = 1,2, 3.

Definition 8.2 The composition of 1-morphisms

*Ml X MQ % ICIQ and *Mg X M3 %) ’C23
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is the 1-morphism
* My B Mz = Ky

where
K1z = K1z 0 Koz 1= ma, A (’Cm X ’C23>

and the morphism «13 is the composition of the morphisms id X G K id and a1 X ags:

KMy B M EEE ) AL (*Ml R Mo H*Ms &Mg) cazblgzs oo Al (’C12 < /C23)

A 2-morphism between 1-morphisms
AMBEN 25K and * MEN 225 K,

is a morphism @15 : K1 — Ko making the following diagram commutative:

*Ml |Z|M3
(071 / \ a2

©
K1 S Ko

A 2-morphism between a holonomic kernel a5 : xM; K M3 — K{5 and the composition K12 0 Kog
of holonomic kernels aqs : M7 K M3 — K15 and asog : xMg K M3 — Koz is provided by the following
commutative diagram

MR M, 2R pe AL (*j\/ll R My K+ My K Mg)
la/l?, JRFQ*AIQ(OQQ X ao3)
13 — Ry A (’C12 X K23)

The composition of 2-morphisms is defined in an obvious way.
The identity 1-morphism Idp. For any M € D° , (Dx) there is a canonical morphism

coh
IM A MBERM — 5A[dX]

corresponding via (??) to the identity map Id € Homp, (xM,*M).

We will say that the 1-morphism as3 is weakly inverse to the 1-morphism a2 (see (?7?)) if there is a
2-morphism from the identity 1-morphism Ida to the composition of 1-morphisms asoz 0 ay2. This means
that the following diagram is commutative:

*Ml X M, z‘d&il)gid
JIMl JRWQ*AIQ(OZQ X 0423)

Sa e, R, A (/clg X /cgg)

Rira A (xMy B Mo KMo KM, )

Remark. These definitions make sense for any (not necessarily holonomic) K;; € Db, (Dx).

3. On composition of holonomic kernels. Recall that for M, N € D® , (Dx) one has

coh

!
MN = AMERN) =Moo N[—dx]
where A : X — X x X is the diagonal embedding.

Definition 8.3 Let K € D, (Dx,xx,). Then it defines a functor

16 : ch)oh(Dxl) - D(Izoh(DX2) IC(M) = pQ*UC ® p‘lM)
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This is motivated by the following proposition (compare with s. 8.2):
Proposition 8.4
RHompy v, (xM1 R Mz, K12) = RHomp,, (M2, K12(My))
Proof. Let p; : X1 x X9 — X; be natural projections. We have
RHomp(xM; K My, K12) = RHomp (p} (xM1)[—dx,] ®o py(Ms)[—dx,], K12) =

RHomp (py(M2)[—dx, ], +p} * (M1)[dx,] ®o K12) =
RHomp(p3(M2)[dx,], K12 ®0 py(M1)[—dx,]) =
RHomp(Ma,pa. (K12 ®0 pi (M1)[—dx, —dx,]) = RHomp(Ma, K12(M))

Proposition 8.5 There is natural isomorphism of functors:
Kas 0 K12 = Kaz 0 K13

Proof.
Consider the following diagrams:

X1 XX2><X3

3/ 1 m N\ 71

X1 XX2 Xl XX3 XQXXg
P N\ P2 @/ N 22
X, X5 X3
and
X1 X X3
./ N T2
X1 X3

Let Ag : X1 X Xo x X3 — X7 X X9 x Xo x X3 is the diagonal imbedding of X5.
Lemma 8.6 Let K15 € ch)oh(DXIXXZ) and Ka3 € Dgoh(ngxxg)- Then
K12 0 Koz = m2,(m3K12 ®0 1 Ko3)
Proof. Follows immediately from w3 = 715 0 Ag and m; = 793 0 As. One has
! !
Ko3(K12(M)) = g3, (ghp2, (PiM1 @ Ki2) @ Ko3) =

! ! ! !
@3, (M1 (PIM @ K12) @ Kaz) = g3, (1, (i M1 @ Ty K12) @ Kag) -

! ! ! !
Q3*7T1*(7TI1M1 & WéKu & 71'11K23) = 7T3*(7T!1M1 ® WéKlg X 7T11K23) =
! !
T3*7T2*(7T11M1 & WéKm ® 7r11K23) =

! ! !
35135 (T2 My ® WéK12 ® 7 Ka3) = 3. (rMy ® Kig 0 Ka3)
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Here (1) is by the base change for the diagram

X1 XXQXXg

73/ N7

X1><X2 X2><X3

P2\ 7 G2
Xo
! !
and (2) is by projection formula f.(A ® f'B) = f.A® B.
Lemma 8.7 The composition of 1-morphisms
(M1,M2,’C12;O{12) on X1 X X2 and (MQ,M3,IC23;0423) on X2 X X3

is a 1-morphisms
(M, M3,K135013) on Xy x X3

where K13 := Koz 0 K12 and asz is the composition:

’623(712) -

M3—>/€23(M2) B IC23(/€12(M1)):7€13(M1)

4. Natural linear maps provided by algebraic kernels. Let M; € Dgoh(DXi), 1 =1,2, and
Kio € Dgoh(Dxlxxg). Suppose we are given the following data:
1) an algebraic kernel

12 € RHomp ., (M2, K12(M1)); Ki2 € RHompy . (Ki2,0x,xx,)

2) an element
Y E RHomD(pg*(’)(Xl X X2)70(X2))

We will construct a linear map
RHomp(Mi,C®(X1)) — RHomp(May, C™(X5))
related to this data. Namely, by the functoriality

RHomp(My,C™®(X;)) — RHomp(pi My, p,C(X1)) —

RHomp(py M1, C™(X1 x Xo)[dx,]) 229

RHomp (K12 ®0 pyM1,C® (X1 x Xs)[dx,]) —
RHomp(p2, (K12 @0 py M), p2.C® (X1 x Xo)[dx,]) —
RHomD(IClg(./\/ll),COO(XQ)[deQ])
The morphism aqo provides the last arrow
RHomD(IClg(Ml), COO(XQ)[deQ]) I RHomD(MQ, COO(XQ)[deZ])

If
12 € RfHomD(MQ,IC12(M1)) ,K12 S RkHOmD(IClg, O)

and
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v € R~ Homp(ps,C® (X, x X5),C™®(X5))

then we get a linear map
R/ Homp(M1,C>®(X,)) — RITFH=dx Homp( My, C°(Xy))

5. Algebraic version of the Radon transform of (holonomic) functions. Any 1-morphism
v : Ay — Az provides a functor

Fg: Mori (A1, As) — Mory (A1, As) a— Boax

There is an object * corresponding to the one-dimensional vector space considered as a D-module over a
point.

The category Mory(x, (X, M)) looks as follows. Its objects are pairs: a holonomic complex of D-
modules £ on X and a morphism a : M — L. The morphisms are provided by ¢ : £1 — Lo making
the corresponding diagram commutative. We will call it the category of D-modules under M on X.

Therefore the 1-morphisms (a, K) : (X, M) — (X,N) provide functors from the category of D-
modules under M on X to the category of D-modules under N on Y.

6. Examples. Let me first discuss the analytic properties of the Radon transform in R2.

o, y) — P(&1,82,8) == /<p(af7 Y)0(§17 + Eoy — s)dxdy

the 1-form
K@(€1,&2) == @L(E1dEa — Eadéy)

is closed on the subvariey &1z + &2y — s = 0. Here (z,y) is a given point. Integral of this 1-form over any
cycle in (&1, &) plane is zero.

Consider the line through the point (z,y) corresponding to £ = (fl, &). On a line minus a point ((z,
in our case),there is canonical multiplicatively invariant measure ( LY. Let L(§) == [ p(x — &ty +&it)
be the integral over this measure. Then

Y)
dt
t

/é (k) (1. &) = L(n) — L(e) (60)

where we integrate over any path connecting points & and 7.
In particular in the affine picture

oo o0
o(a,y) — / ola,ax 1 b)dr, rp = Fda / 2h(a,y — az)da — / e (61)

oo

The 1-form x¢ is exact on the image of functions vanishing at the point (z,y). For example

w(I(zp)) = (I(zp))pda = (Ip),da = d(Ip)

Formula (60) follows immediately from this.
Now let us turn to the D-module picture. Set

Xi={(z,y)} =R* Xo={(a,0)} =R?*, X3z={(z',¢)} =R’
and MXi = 'Dxi. Notice that *DXi X Dxi+1 = DXriXXiJrl[dXi]' Set
5(A)=6(y —ax —b) and §(A")=6(y —ax’ —b)

Ki2 :=Dx,xx, - 0(A), Koz :=Dx,xx, (A"
a12[—2] 1 1x,xx, V> 0(A),  a12[—2] : I1x,xxs — 5(1)(14’)

39



The D-module K13 has a more complicated structure which can be described as follows.
0— Ox,xx; ®0a,; — K13 — oy — 0 (62)

Here A3 C X3 x X5 is the diagonal and V is the divisor of pairs of points (p,p’) with = 2’ (Le. the
vertical line through p contain the point p’). Let

JXixXs\Vo Xy x Xy i:VoXixXy [f:V\A3<—V
Then (62) is the Bauer sum of the following two standard extensions:
0 — Ox,xx5 — JxJ Ox;xx5 — 0y — 0
and
i (0 — 85, — Sif*Ov — Oy —0)

To see this consider the variety A := {p,,p'} C X; x X3 x X3 such that p,p’ € [ and its closure A in
X1 x X2 x X3. Notice that A is the blow up of the diagonal Aj3 in X; x Xs.
Then K13 = m2,04. One has 72,01 = Ox, xx; ® da,,. Further, notice that A\ A projects isomor-
phically to V. So one has
0— 04— 904 — 0y — 0

Taking direct image of this extension to X7 x X3 we get (62)).
Proposition 8.8 The formula

8(x — 2oy —y') — 8y — ax — b) @ 6V (y — az’ — b)dadb (63)
defines a homomorphism of D-modules 6o — K13 and hence a 2-morphism Idp, => (013, K13).

Proof. We have to show that applying to the right hand side of (63) any differential equations which
the left hand side satisty, we will get exact 2-form in the de Rham complex with respect to (a, b) variables.
This follows from the formulas

(z— ') - 6(A) @ 6V (A")dadb = d(é(A) ® 6(A')(zda + db))
(y — o) - 6(A) ® 60 (A")dadb = d(a(A) ® 6(A")a(zda + db))
(9, + 021)3(4) @ 60 (A')dadb = d(6(A) © 8 (4')ada)

(8, + 8,)3(A) @ 6V (A )dadb = d(a(A) ® 5<1>(A)da)

It is amazing to see the structure of the extension (62) from this point of view. Namely, 6(A4) ®
0(A")dadb is a generator of Ki3, so (z —2')0(A) ® §(A’)dadb is the generator of the submodule Ox, « x,
and 6(A) ® 6 (A")dadb generates the submodule da .

The Radon transform over the lines in the space.

X1 = {(x,y,z)} = A37 Xo = {(al’a%bth)} = A47 X3 = {(xlvylvzl)} = A’

and
0? 0?
3&16[)2 h 8&281)1)

MXi:DXi for i:1,3; MXQZD)(Q'(

Notice that xMx, = Mx,[3].
Let A C X; x X5 be the correspondence {y — a1z — by = 0,z — agx — by = 0} defining our family of
lines. Set
5(A) =0y — a1z —by) - 6(z —agx —ba), I(A) =08y —arx’ —by)-5(2" — agx’ — ba)
Then
’Clg = DX1><X2 . (5(14) ’C23 = DX2><X3 . (5(14/)

12 1X1><X2 — (5(14)[—3} o3 ]-X2><X3 [— (S(Al)[—?)}
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Proposition 8.9 The formula
8z — )3y — 413z — 2') — G, (5(4)),5(4))

defines a homomorphism of D-modules 6o — Koz 0 K12 providing a 2-morphism IdDX1 => (3,Ka3) 0

(12, K12)

Here

1
Gm,(9, f) = 5((%1 - f—g- fi)day Aday Ndby = (g,, - f — g+ fo,)day A day A dby

(91/71 “f-g- flgl)dal A dby A dby — (91132 “f-g- féz)d(lz A dby /\dbz)

Relation with the "form k” of [GGrS]. The Green class can be represented by another cocycle

5(A")day + i5(A')da2) A (zday + dby) A (zdas + dbs)

)
km = 0(A) ® ( ;

by

Its great advantage is ”locality”: it is a cocycle in the de Rham complex with support in the incidence
subvariety A.
The expression g—bfldal + g—lfzdag is the ”1-form x”. It is a 1-form on the incidence subvariety A.
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