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1 Introduction

1. An example. Let f(x) be a smooth function in Rm and

I : f(x) 7−→ If(y; r) :=
∫
|ω|=1

f(y + ω · r)dω

be the operator of mean value over a radius r sphere centered at y ∈ Rm. The integral transform I is
clearly injective.

Let C be a compact hypersurface in Rm isotopic to a sphere.

Theorem 1.1 Let f(x) be a smooth function vanishing near C. Then one can recover f from its mean
values along the spheres tangent to C, and the inversion is given by an explicit formula.

In fact we will show that this theorem is true for any compact manifold C satisfying a mild condition.
The only known before case was the family of all spheres tangent to a plane (horospheres in the hyperbolic
geometry, see [GGV]).

The function If(y; r) satisfies the Darboux differential equation

( ∂2

∂r2
−

m∑
i=1

∂2

∂y2
i

+
m− 1
r

∂

∂r

)
If(y; r) = 0

Let Sol(∆D, C∞(Rm × R∗+)) be a space of smooth solutions of the Darboux equation ∆D. We will
construct an inverse operator J as a map

J : Sol(∆D, C∞(Rm × R∗+)) −→ C∞(Rm)
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Namely, let Am(X) be the space of smooth differential m-forms on a manifold X. We will define a
differential operator ν : C∞(Rm × R∗+) → Am(Rm × R∗+) such that the m-form νϕ is closed if (and
only if) ∆Dϕ = 0. For a solution ϕ(y, r) we define (Jϕ)(x) integrating the (closed!) differential m-
form νϕ(y, r) over a certain m-cycle. In particular restricting this form to the m-dimensional subvariety
of all spheres tangent to C and integrating over it we get the theorem, see chapter 7 for details and
generalizations.

2. General problem. Let X be a smooth manifold of dimension n andM a system of linear partial
differential equations on X. Denote by Sol(M, C∞(X)) the space of smooth solutions to M.

Let N be a linear system of PDE on a manifold Y . Let K(x, y)dx be a (n, 0)-form on X × Y with a
compact support along X. Assume that it satisfies the system N along Y . Then the kernel K(x, y)dx
defines a linear map IK : C∞(X) −→ Sol(N , C∞(X)), f(x) 7−→

∫
X
k(x, y)f(x)dx. Its restriction to

Sol(M, C∞(X)) gives an operator Sol(M, C∞(X)) −→ Sol(N , C∞(X)). However if M is non trivial
the functional dimension of Sol(M, C∞(X)) is less then n, so many kernels represents the same operator.

In this paper I adress the following

Problem. What is the natural description for the linear maps

Sol(M, C∞(X)) −→ Sol(N , C∞(Y )) (1)

When Y is a point we come to the question of natural description for linear functionals on the space
Sol(M, C∞(X)). On the other hand the composition of a linear map (1) with the evaluation at a point
y ∈ Y gives a linear functional on Sol(M, C∞(X)). So these questions are closely related.

In chapters 5-6 we suggest a construction of operators between solution spaces of linear PDE called
natural linear maps. Unlike the operators given by the Schwartz kernels K(x, y)dx, the natural linear
maps are obtained by integration of closed forms over certain cycles in X. We apply these ideas to solve
some old problems in integral geometry.

In chapter 5 a general construction of linear maps between solution spaces is given. The natural linear
maps seems to be the most interesting particular case of that construction.

To discuss these questions we need the language of D-modules.
3. Systems of linear PDE and D-modules. Let DX (or D) be the sheaf of rings of differential

operators on a smooth manifold X. Suppose we have a linear system M of p differential equations on q
functions f1, ..., fq:

M = {
q∑
j=1

Pijfj = 0, i = 1, ..., p}

Then we can assign to M a left coherent D-module M with q generators e1, ..., eq and p relations:

M =
⊕D · ej(

+D(
∑
Pijfj)

) = Coker(Dp −→ Dq)

On the other hand a coherent D-moduleM = Coker(Dp −→ Dq) provides a linear system of p differential
equations on q functions.

A solution f to the system M in some space of functions F is nothing else then a morphism of
D-modules αf :M−→ F .

4. Natural functionals on solutions to M. Below X usually will be an algebraic manifold over
R of dimension n. Let D′(X) be the space of distributions on X understood as the space of linear
continuous maps on the space of smooth differential forms of top degree with compact support on X.
Denote by Dm(X) the space of m-currents on X, i.e linear continuous functionals on the space of smooth
differential (n−m)-forms with compact support on X.

The de Rham complex DR(M)• of a D-module M is defined as follows:

M d−→M⊗O Ω1 d−→ ...
d−→M⊗O Ωn−1 d−→M⊗O Ωn (2)
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where M⊗O Ωn is sitting in degree 0, d has degree +1 and given by

d(m⊗ ω) := m⊗ dω +
∑ ∂

∂xi
m⊗ dxi ∧ ω

(it does not depend on coordinates xi), and O is the structural sheaf of X.
Consider the complex

DR(M⊗O D′(X))• = DR(M)• ⊗O D′(X)

Notice that DR(D′(X))• coincides with D•(X)[n], the usual de Rham complex of currents on X
shifted by n to the left. Therefore any f ∈ Sol(M, C∞(X)) defines a homomorphism of complexes

m ◦ f : DR(M⊗O D′(X))• −→ D•(X)[n]

given by the composition

DR(M⊗O D′(X))•
f−→ DR(C∞(X)⊗O D′(X))• m−→ D•(X)[n]

Here m is induced by the homomorphism of D-modules C∞(X) ⊗O D′(X) −→ D′(X) provided by the
multiplication. We get a pairing

Hm(DR(M⊗O D′(X))[−n])⊗ Sol(M, C∞(X)) −→ Hm(X,R) (3)

(κ, f) −→ [(m ◦ f)(κ)]

Evaluation on a homology class [γ] ∈ Hm(X,R) leades to a functional

Sol(M, C∞(X)) −→ R, f −→< [(m ◦ f)(κ)], [γ] > (4)

Such functionals are called the natural functionals on Sol(M, C∞(X)).
How the integer m depends on M? Let ΣM ⊂ T ∗X be the characteristic variety for a D-module M.

It is coisotropic, so dM := dimΣM − dimX ≥ 0. The number dM can often be viewed as the functional
dimension of the solution space to M. We will see in chapter 3 that

Hm(DR(M⊗O D′(X))[−n]) = 0 for m > dM

In particular natural functionals for a non zero system of PDE are never given by integration over
fundamental class of X.

For a D-module M one may ask whether the described above natural functionals give all the dual
to Sol(M, C∞(X)). Integral geometry (including the cohomological Penrose transform) provides a wide
class of examples where the answer is positive.

Remark. If X is noncompact, the integration over a (may be noncompact) m-cycle γm defines a
linear functional f −→

∫
γm
κ(f) on an appropriately chosen class of functions with certain decreasing

conditions at infinity. In a sence a system of PDE ”changes topology of the space”, see examples in
chapter 2 and s. 5.6 below. I will not pursue this point further and hope to return to it in future. (IfM
is holonomic the complex of solutions is a constructible complex of sheaves on X ”changing” topology of
X).

5. An elementary description of natural functionals. Assume that a D-module M has q
generators. Then an m-chain κ in the de Rham complex DR(M⊗O D′(X))[−n] may be written as

κ =
q∑
j=1

Pj ⊗ ωj , Pj ∈ DX , ωj ∈ Dm(X)

So we may think about it as of a differential operator

κ̄ : C∞(X)q −→ Dm(X); κ̄(f1, ..., fq) 7−→
q∑
i=1

Pj(fj) · ωj
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Suppose that κ is a cycle in the De Rham complex of M. Then the m-current κ̄(f1, ..., fq) is closed on
solutions of the system M, i.e. dκ̄(f1, ..., fq) = 0 whenever the functions (f1, ..., fq) satisfy the system
M. In this case we will say that the differential operator κ̄ is M-closed.

Remark. This definition makes sence for any system of partial differential equations, not necessarily
linear. It leads to a notion of conservation laws for a system of nonlinear PDE.

6. Natural linear maps between solution spaces: a naive version. LetM and N be systems
of linear PDE on manifolds X and Y . A natural linear map

I : Sol(M, C∞(X)) −→ Sol(N , D′(Y ))

is defined as follows. Let κy : C∞(X) −→ Dm(X) be anM-closed differential operator whose coefficients
are distributions on Y satisfying the system N . Then

I : f 7−→
∫
γm

κyf ∈ Sol(N , D′(Y ))

where γm is an m-cycle in X and by definition
∫
γm
κyf :=< [γm], κyf >. The key idea of this paper is

the following:

If there is a (continuous) linear functional on solutions to a system of linear partial differential equa-
tions M or an operator between solution spaces to M and N , then one should look for its natural
realization.

7. Relation with integral geometry. Let B be a manifold of dimension n and a linear operator

IK : C∞0 (B) −→ C∞(Γ) f(x) 7−→
∫
B

K(x, ξ)dx (5)

enjoys the following properties:
It is injective, transforms functions f(x) to solutions of a linear system of PDE N on Γ, and

IK(C∞0 (B)) is dense in Sol(N , C∞(Γ)).
Usually K(x, ξ) satisfies a holonomic system of differential equations.
Such a situation is typical in integral geometry and appears as follows. Let {Bξ} be a family of

submanifolds of B parametrized by a manifold Γ. Suppose on {Bξ} densities µξ (depending smoothly on
ξ) are given. Then there is an integral operator

I : C∞0 (B) −→ C∞(Γ), f(x) 7−→
∫
Bξ

f(x)µξ (6)

So here K(x, ξ) = µ(x, ξ) · δ(A)db, where db is a volume form on B, and

A := {(x, ξ)|x ∈ Bξ} ⊂ B × Γ

is the incidence subvariety. The integral transform I often satisfies the list of properties above. This was
discovered by F.John [J] for the family of all lines in R3, and developed much further by Gelfand, Graev,
Shapiro [GGrS]. Here are some examples.

Example 1. Consider the integral transformation

I : f(x1, ..., xn+1) −→
∫
f(t1, ..., tn, a

n∑
i=1

t2i +
n∑
i=1

biti + c)dnt (7)

related to the (n+ 2)-parametrical family of paraboloids in Rn+1. Let S(Rn+1) be the Schwartz space of
functions in Rn+1.

Lemma 1.2 If f ∈ S(Rn+1) then ( ∂2

∂a∂c −
∑n
i=1

∂2

∂b2i
)If = 0.

The integral transformation I is injective on S(Rn+1).
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Proof. Applying ∂2

∂a∂c to the right-hand side of (7) we get∫ n∑
i=1

t2i f
′′

tn+1
(t1, ..., tn, a

n∑
i=1

t2i +
n∑
i=1

biti + c)dnt

Applying
∑n
i=1

∂2

∂b2i
we get the same result. Let a = 0. Then I is the Radon transform and so the lemma

follows from its standard properties.
Example 2. Consider the integral transformation

Ik : f(x1, ..., xn) −→
∫
f(t1, ..., tk,

k∑
j=1

aj1tj + a0
1, ...,

k∑
j=1

ajn−ktj + a0
n−k)dt1...dtk

related to the family of k-planes in Rn: xk+i =
∑k
j=1 a

j
ixj + a0

i .

Theorem 1.3 ([GGrS]) a) If f(x) ∈ S(Rn) then( ∂2

∂aj1i1∂a
j2
i2

− ∂2

∂aj2i1∂a
j1
i2

)
If = 0

where k + 1 ≤ i1, i2 ≤ n, 0 ≤ j1, j2 ≤ k.
b) Ik is injective on S(Rn) and provides an integral formula for solutions the system of PDE above.

Let us return to the integral transform IK (see (5)). Its properties implies that its inverse would
provide a continuous linear map

JK : Sol(N , C∞(Γ)) −→ C∞(B)

Definition 1.4 An integral transform IK admits a universal inversion formula if the inverce operator
JK is given by a natural linear map.

To clarify the meaning of this definition consider the composition Jb of the operator J with the
δ-functional at a point b ∈ B. Its natural realization is given by an N -closed differential operator
νb : C∞(Γ) −→ Dn(Γ) and a certain n-dimensional cycle γb in Γ such that∫

γb

νb(IKf) = c[γb] · f(b)

Here c[γb] is a constant depending linearly on the homology class of γb and n = dimB. We define the left
hand side as < νb(IKf), [γb] >. To compute the integral we may use any cycle γb transversal to the wave
front of the distribution κb(IKf). Then the restriction of this distribution to γb is defined and we can
integrate it over the fundamental class of γb. So we can find the value f(b) if we know only the values of
IK(f) at an infinitesimal neighborhood of any such a cycle. This explanes the name ”universal inversion
formula”.

8. Local and nonlocal inversion formulas in integral geometry. Let us discuss in more details
the general Radon transform (6).

Definition 1.5 A local universal inversion formula for the Radon transform (6) is given by a differential
operator κb : C∞(Γ) −→ Ak(Γb) such that κb(If) is closed (on Γb) and∫

γk

κb(If) = c[γk] · f(b)

where c[γk] is a constant (depending linearly on the homology class [γk]).
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In particular the value of any smooth function f on B at any point b can be recovered from its integrals
over the submanifolds Bξ passing through an infinitesimal neighborhood of b.

Let Γb be the variety parametrizing all the subvarieties Bξ passing through a given point b. Set
k := dimBξ. Notice that dimΓ − dimB = dimΓb − dimBξ. So if dimΓ > dimB the degree of the form
κb(If) is less then dimΓb.

A first example of local universal inversion formula was discovered in 1967 by I.M.Gelfand, M.I.Graev
and Z.Ya.Shapiro for integral transformation IC

k related to the family of all k-planes in Cn ([GGS]). Here
we treat complex planes as real submanifolds and integrate smooth functions along them. Later more
generic examples were studied, including local universal inversion formulas for the families of complex
curves, see [GGiG], [BG], [Gi].

However in integral geometry there are many examples where there are no local inversion formulas.
This is quite typical in “real” integral geometry (i.e. we integrate over family of real submanifolds). For
instance in examples 2 (resp 3) the inversion formula is nonlocal if the dimension of hyperboloids (resp.
planes) is odd. It is always non local for integral transformations related to any family of real curves.

A very interesting approach to integral geometry on k-planes in Rn was suggested by I.M.Gelfand
and S.G.Gindikin [GGi], (see also [GGR]). However it was based on the Fourier transform in Rn and so
can not be generalized to families of “curved” submanifolds, like in examples 1-2. What is even more
important, the differential k-form κ was replaced by a k-density, so a possibility to use the Stokes formula
was missed. It seems that this approach to integral geometry was not really understood yet.

As a result the nature of the form κb and inversion of the general integral transformations, especially
if they do not admit a local inversion formula, were the key unsolved problems in integral geometry.

The main idea of this paper is that

Inversion formulas in integral geometry are given by natural linear maps between solution spaces of
systems of partial differential equations.

Let me explain how the local universal inversion formulas fit in this concept. The form κb(If) is a
differential k-form on Γb. Since n − k = dimΓ − dimB, a k-form on Γb defines an n-current on Γ. The
n-current corresponding to κb(If) leads to a natural liear map given by integration of κb(If) over an
n-cycle K ⊂ Γ. We will demonstrate this for the Radon transform over spheres in Rm.

In general our approach leads to a universal inversion formula where the functional Jb is represented
by a differential n-form on Γ. The fact that this n-form does not concentrated on a subvariety Γb (or
a certain bigger subvariety of Γ) means that we get a nonlocal universal inversion formula. So we treat
simultaneously both local and nonlocal inversion formulas.

The form κb appeared in [GGS] as a construction ”ad hoc” and looks like a very special phenomena.
In our approach the universal inversion formula is a very general property of the corresponding system
of linear PDE. Its locality, however, is a rather rare phenomena, which generalizes the Huygens principle
or, more generally, the notion of lacunas for hyperbolic differential equations.

In particular in these examples our natural functionals describe the whole dual to the space of solutions
of a linear system of PDE.

9. Some general remarks on analytic theory of overdetermined systems. The classical
theory of PDE usually study systems of p linear partial differential equations on p unknown functions on
X i.e. the characteristic variety of the system has codimension 1. (Of cource there are some exceptions
with extremely reach analytic theory, like the Cauchy-Riemann system). It seems that one of the reasons
is this. A system P1f = P2f = 0 of two general differentaial equations on one unknown function has
no solutions because the corresponding D-module is equal to zero (even if Pi are differential operators
of order one). This shows that overdetermined systems (i.e. the ones where the codimension of the
characteristic subvariety is greater then 1) can not describe a physical process in a way similar to systems
of p equations on p unknown functions (like Laplas, Schrodinger, etc. equation): a small perturbation of
the experimental data leads to a system without solutions. Therefore one should not expect an analytic
theory of general overdetermined systems, i.e. a theory stable under a perturbation of a system

The theory of D-modules is a tool providing nontrivial linear systems of PDE. We think that an
interesting overdetermined system of PDE should be a part of a reacher data. For example for a system
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N on a variety Γ appearing in integral geometry (see s.6) we should also remember the kernel K(x, ξ) on
B × Γ. So perturbing such a system we should deform the whole data, not only the system N on Γ.

We may wonder about the goals of analytic theory for some special overdetermined systems. It seems
that the problem of natural description of linear maps between solution spaces looks quite promising.

10. The structure of the paper. Chapter 2 contains examples of functionals and natural func-
tionals on solution spaces of systems of PDE. In chapter 3 we recall some general information about
D-modules, including the duality on the derived category of D-modules, needed for applications to in-
tegral geometry. In chapter 4 our key tool appears: the Green class of a D-module. It generalizes the
classical Green formula for a single differential operator. Chapter 5 contains a definition and properties
of general linear maps between solution spaces of (complexes of) D-modules. Then we define natural
linear maps as a quite special case of general linear maps. The definitions uses the language of derived
categories. This is necessary for many reasons including:

1) Even nice systemes like M = {x1 · f = ... = xk · f = 0} may have no smooth solutions, so one
should consider the spaces of “higher” solutions. (In the example above only ExtkD(M, C∞(Rn)) 6= 0; it
is isomorphic to C∞(Rn−k)).

2) The duality may send a D-module to a complex of D-modules.
In applications the dual complex for a D-module M is often concentrated in just one degree. Such

M’s will be called excellent D-modules. In chapter 6 we define natural linear maps between solution
spaces for excellent D-modules. This allows to eliminate derived categories and makes the story more
elementary. I made this chapter independent of chapter 5, so those who interested only in applications
to “nice” systems of PDE could go directly to chapter 6.

In chapter 7 we demonstrate how the general method works for the family of all spheres in Rm (see
section 1.1 above). Our approach leads to universal inversion formulas which are nonlocal when m is odd
and local when m is even. The corresponding problem of integral geometry was unsolved even for the
family of circles in the plane.

In fact we study in chapter 7 integral operators Iλ more general then the Radon transform over the
family of spheres. They are intertwiners for the group O(m + 1, 1) acting from the space of sections
of a line bundle over Sm to the space of sections of a line bundle over the manifold Xm+1 of oriented
hyperplane sections of Sm. (The hyperplane sections of Sm can be identified with spheres in Rm by a
stereographic projection). The image of Iλ is described by differential equations. So the inverse operators
gives examples of intertwiners which are well defined only on a subrepresentation.

The next problem after the definition of natural linear maps would be development of ”calculas of
natural linear maps”. In particular there are the following questions:

a) How to compose natural linear maps.
b) How to compute their composition. For instance when the composition of two natural linear maps

is equal to a given natural linear map.
A universal inversion formula for the integral transform IK is a natural linear map JK : Sol(N , C∞(Γ)) −→

C∞(B) such that the composition JK ◦ IK equals to the identity map, so this is a very special case of
the problem b).

The development of this program should include a version of the theory of Fourier Integral Operators
as a special case when M = DX , N = DY .

In chapter 8 we study an algebraic version of the problem of composition of natural linear maps.
It turns out that one can organize neatly the algebraic structures responsible for that introducing a
bicategory of D-modules.

The objects of this bicategory are pairs (X,M), where M is a complex of D-modules on a variety
X. A 1-morphism (X,M) → (Y,N ) is the algebraic part of the data needed to construct a linear map
RHomD(M, C∞(X)) −→ RHomD(N , D′(Y )). Composition of 1-morphisms mirrors the composition of
linear maps. A 2-morphism between two 1-morphism reflects coincidence of the the corresponding maps
on functions.

In the end of chapter 8 we consider the simplest examples of composition of 1-morphisms and 2-
morphisms relevant to integral geometry.
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The main results of this paper were annonced in [G1]. Another approach to integral geometry via
D-modules was independently developed by A. D’Agnolo and P. Schapira [A], [AS1-2]. Inversion formulas
for real quadrics were also considered by S.G. Gindikin [Gi2].
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2 Examples

1. Analitycal functionals [GS]. Let X = C andM be the Cauchy - Riemann equation ∂
∂z̄ f(z, z̄) = 0.

Let g(z) be a holomorphic function. Then

f(z, z̄) −→ g(z)f(z, z̄)dz

is an M-closed operator of order 0. The corresponding linear functional should be

f(z) −→
∫
γ1

g(z)f(z)dz (8)

To make sense out of this consider the space Z1 of holomorphic functions f(z) such that |z|q · |f(z)| ≤
Cq ·ea·Imz for any q > 0 (the constants a and Cq may depend on f). Let C̄ = {C∪S1} be a compactification
of the complex plane by a circle such that each line compactifies by endpoints at + and - infinity and
two lines have the same endpoints if and only if they are parallel. Let x− and x+ are the endpoints of
the x - axis (z = x+ iy). Let γ1 be a cycle representing the nontrivial homology class in H1(C̄, x− ∪x+).
Then the right side of (8) is convergent for g(z) ∈ Z1 and defines a continuous linear functional on Z1.

One can also take g(z) to be a meromorphic function and integrate along compact 1-cycles in
C\{poles of g(z)}. For example if g(z) = 1

z−z0 we get the Cauchy formula

f(z0) =
1

2πi

∫
γ

f(z)
z − z0

It can be interpreted as the natural realization for the δ-functional f(z)→ f(z0).
Now let M be the Cauchy-Riemann system in Cn. Let g(z) be a holomorphic function. Then

f(z, z̄) −→ g(z)f(z, z̄)dz1 ∧ ... ∧ dzn

is an M-closed operator of order 0. The corresponding natural functional is

f(z) −→
∫
γn

g(z)f(z)dz1 ∧ ... ∧ dzn

where f(z) belongs to the space Zn of holomorphic functions satisfying some grouth condition ([GS]). So
any g(z) ∈ Zn defines an element of DSol(M)n

However for n > 1 there are another M - closed operators. Namely, let us look at the classical
Bochner - Martinelly formula

f(z0) =
∫
s2n−1

f(z)
ω∗(z̄) ∧ ω(z)
|z − z0|2n

(9)

where ω(z) = dz1 ∧ ... ∧ dzn and ω∗(z) =
∑n
i=1(−1)izidz1 ∧ ...d̂zi... ∧ dzn and [s2n−1] is a generator in

H2n−1(Cn\z0) The zero order operator

f(z, z̄) −→ f(z)
ω∗(z̄) ∧ ω(z)
|z − z0|2n
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represents a non-zero element of DSol(M)2n−1 for X = Cn\z0

In fact all “integral formulas” in complex analysis (like the Cauchy formula in a polydisc, the Weil
formula ...) are examples of elements in DSol(M)m where n ≤ m ≤ 2n−1 given by zero order operators.

2. The Green function of a differential operator and a natural realization of the δ-
functional. Let P =

∑
aI(x)∂Ix be a differential operator and P t =

∑
∂IxaI(x) the transposed one (I is

the multyindex). The classical Green formula is

(Pu · v − u · P tv)dx1 ∧ ... ∧ dxn = dωn−1(u;P ; v) (10)

where ωn−1(u;P ; v) is an (n− 1)-form depending linearly on u and v. For example if ∆ =
∑n
i=1 ∂

2
xi then

ωn−1(∆;u, v) =
n∑
i=1

(u′xiv − uv
′
xi)dx1 ∧ ...d̂xi... ∧ dxn

A Green function g(x, y) for P is a generalized function on X ×X satisfying

P txg(x, y) = Pyg(x, y) = δ(x− y)

Let us put in (10) u := g(x, y) and suppose Pv = 0. Then

v(x) =
∫
sn−1

ωn−1(g(x, y);P ; v)

where sn−1 is a small (n−1)-sphere around x. Therefore ωn−1(g(x, y);P ; v) provides a natural realization
of the δ-functional f → f(x).

There are differential operators that do not have a Green function, for example the H. Lewy operator
1/2(∂x1 + i∂x2)− (x1 + ix2)∂x3 or the operator ∂x − ix∂y.

3. A Green form for an arbitrary system M.

Definition 2.1 A Green form for a system M is an element gy ∈ Sol(M)n−1 such that

dgy
M= δ(x− y)dx1 ∧ ... ∧ dxn

Here M= means M-equivalence, i.e.

dgy(f) = f(y)dx1 ∧ ... ∧ dxn f ∈ Sol(M, C∞(X))

If gy is a Green form for M then for any f ∈ Sol(M, C∞(X)) one has

f(y) =
∫
sn−1

gy(f)

Here sn−1 is a small sphere around y. This follows from the Stokes formula.

Example 2.2 gy : f → ωn−1(P ; g(x, y), f) (see s 2.2 above) is the Green form for a differential equation
Pf = 0.

Example 2.3 The Bochner - Martinelly form (9) provides a Green form

f −→ f
ω∗(z̄) ∧ ω(z)
|z − z0|2n

(11)

for the Cauchy-Riemann system in Cn.
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4. A universal solution of a boundary value problem. Let M be a system of PDE on
X and m := dM. Let Id : Sol(M, C∞(X)) −→ Sol(M, C∞(X)). be the identity map. Its natural
realization should be given by anM-closed operator Gx : C∞(X) −→ Dm(X) depending on a parameter
x ∈ X whose coefficients considered as functions on x are also solutions to M. For a given solution
φ ∈ Sol(M, C∞(X)) one has Gx(φ) is an m-form on X such that for any closed m-dimensional manifold
Y one has ∫

Y

Gx(φ) = c[Y ]φ(x) (12)

where c[Y ] is a constant depending linearly on the homology class of Y .
According to the definition to compute Gx(φ) at a point y ∈ Y one has to know the restriction and a

finite number of transversal derivatives of φ at y. So formula (12) is a universal solution to the Cauchy
problem for M on Y . The fact that dM can be often viewed as a “functional dimension” of the space of
solutions toM) looks very natural from this point of view. Gx will be referred to as the boundary value
problem Green form.

Remark 2.5. There are two different realizations for the identity map given in s. 2.3 and s. 2.4. I
would like to emphasize the following differences between them. The realization given in s. 2.3 is not
a natural one because the form is not M-closed. However one may interpret it as a natural realization
for a modification of M at x. Further, in general the cycles for gy and Gy are of different dimension
and in fact of different nature. Namely, for a Green form gy the cycle always exist and represents a
class in Hn−1(X\x), while for the boundary value problem Green form Gy the cycle in (12) represents a
homology class of X of dimension m and its existence is a nontrivial problem.

3 Basic facts about D-modules

For conviniense of the reader I will recall some material about D-modules (see [Be], [Bo]).
1. The bimodule DΩ

X . I will assume that X is an algebraic manifold, D = DX is the sheaf of regular
differential operators on X and ΩX the OX - sheaf of regular differential forms of highest degree on X.
ΩX has a right DX -module structure given by

ω · f = fω, ω · ξ := −Lξω

where f ∈ OX and ξ is a vector field. Here Lξω := diξω. Set

DΩ
X := DX ⊗O Ω−1

X = HomOX (ΩX ,DrX) (13)

where DrX is DX viwed as a right D-module via right multiplication. Then (13) carries 2 commuting left
DX -modules structures. The first is provided by the left multiplication on DX , and the second, ′′◦′′, is
given by

ξ ◦ (λ)(ω) = λ(ω · ξ)− λ(ω) · ξ (14)

where ξ is a vector field and λ ∈ HomDX (ΩX ,DrX).
The two natural commuting left DX -module structures on DΩ

X let us to consider DΩ
X as a D-module on

X×X. It is canonically isomorphic to the DX×X -modules δ∆ of δ-functions on the diagonal ∆ ⊂ X×X.
There exists a canonical involution on DΩ

X interchanging the two left DX -module structures. For δ∆ it is
induced by the switch of the factors of X ×X.

2. The duality functor. Let Db
coh(DX) be the derived category of bounded complexes of DX -

modules whose cohomology groups are coherent DX -modules. Let us define a duality ? : Db
coh(DX)0 −→

Db
coh(DX) by

?M := RHomDX (M,DΩ
X)[dimX]

The second DX -structure on DΩ
X provides a left DX -module structure on the sheaves ExtiDX (M,DΩ

X).
To compute ?M we should find a bounded complex P = {−→ P−1 −→ P0 −→ P1 −→ ...} of locally

projective coherent D-modules quasiisomorphic to M and set ?M = ?P where (?P)i = ?(P−dimX−i) :=
HomDX (P−dimX−i,DΩ

X). It is easy to see that ? ? P is isomorphic to P. Therefore ?? = Id.

10



The object ?M represents the functor

N −→ RHomDX×X (N �M, δ∆)[dimX]

i.e. one has
RHomDX (N , ?M) = RHomDX×X (N �M, δ∆)[dimX] (15)

Indeed, there is canonical morphism

RHomDX×X (N �M,DΩ
X) −→ RHomDX (N , RHomDX (M,DΩ

X))

It is obviously an isomorphism when N =M = DX , and so using locally free resolutions we see that it
is an isomorphism in general.

Let SSM be the singular support of a D-module M. The following important result was proved by
Roos.

Theorem 3.1 a) M has a finite resolution by locally projective DX-modules.
b) codimSS(ExtiDX (M,DΩ

X) ≥ i
c) If codimSS(M) = k, then ExtiDX (M,DΩ

X) = 0 for i < k.

Notice that Hi(?M) = ExtdimX+i
DX (M,DΩ

X) The Roose theorem implies that ?M is concentrated in
degrees [−dimX,−codimSSM].

Lemma 3.2 DR(M) = ΩX
L
⊗DX M.

Proof. Using the Koszul complex we see that DR(DX) is a locally free resolution for the right
DX -module ΩX . One has DR(M) = DR(D) ⊗OM. Let Db(ShX) be the bounded derived category of
sheaves on X.

Theorem 3.3 Let M ∈ Db
coh(DX) and N ∈ Db(DX). Then there is an isomorphism in Db(ShX)

functorial with respect to M and N

DR(?M⊗O N )[−dimX] = RHomDX (M,N ) (16)

This nature of this isomorphism and the fact that N may not be coherent plays a crucial role, so
we will scetch its proof following [Bo], ch. 6. Let us replace M and N by bounded locally projective
resolutions P•M and P•N . One can suppose P•M to be locally free from certain low degree on. Therefore
according to lemma 3.2 to prove the theorem it is sufficient to construct for a given coherent DX -modules
M and N a natural morphism (functorial with respect to M and N )

α : ΩX ⊗DX
(
HomDX (M,DrX ⊗ Ω−1

X )⊗OX N
)
−→ HomDX (M,N ) (17)

which will be an isomorphism if M = DX .
The functors ΩX⊗DX and HomDX in the left-hand side of (17) are defined using different commuting

left DX -structures on DX ⊗Ω−1
X . So we can interchange them and get the canonical morphism from the

left-hand side of (17) to
HomDX

(
M,ΩX ⊗DX

(
DX ⊗ Ω−1

X )⊗OX N
))

(18)

There is canonical isomorphism of DX -modules

ΩX ⊗DX
(
DX ⊗ Ω−1

X )⊗OX N
)

= N (19)

Indeed, the left structure on (DX ⊗ Ω−1
X ) we used to define ΩX ⊗DX (DX ⊗ Ω−1

X ) is provided by the
left multiplication in DX , therefore ΩX ⊗DX (DX ⊗Ω−1

X ) = O. So (18) is canonically isomorphic to N as
O-module. This isomorphism commutes with the action of vector fields. So (19) is canonically isomorphic
to HomDX (M,N ). Theorem 3.3 is proved.

Placing to (16) N = C∞(X) and using ? ?M =M we get

11



Corollary 3.4
DR(M⊗O C∞(X))[−dimX] = RHomDX (?M, C∞(X)) (20)

In particular
HomDX (?DX , D′(X)) −→ DR(DΩ

X ⊗O D′(X)) = Dn(X)

Corollary 3.5 For any A,B ∈ Db
coh(X), C ∈ Db(X) one has a canonical functorial isomorphism in

Db(ShX):
RHomDX (A,B ⊗OX C) = RHomDX (A⊗OX ?B, C)

Proof. By the theorem above both parts are isomorphic to

RHomDX (OX , ?A⊗OX B ⊗OX C)

In particular for M∈ Db
coh(X) there is a canonical morphism of DX -modules

iM : OX −→ ?M⊗OX M (21)

More precisely, there exists a canonical section over X of the sheaf
H0(RHomDX (OX , ?M⊗OXM), or, what is the same, a canonical morphism CX → RHomDX (OX , ?M⊗OX
M) in Db(ShX).

3. Functors between the derived categories of D-modules . Let Y → X be a morphism of
varieties and dY,X := dimY − dimX. Let p+ be the naive inverse image functor on D-modules. Then
p! := Lp+[dY,X ]. If p : Y → X is smooth then p∗ can be computed via relative De Rham complex
p∗M = Rp•(DRY |X(M)), where DRY |X(M) := Ω•Y |X ⊗M[dY,X ].

Lemma 3.6 Suppose p is smooth. Then there is a canonical isomorphism of functors on Db
coh(D)

p∗ := ?p!? = p![−2dY,X ]

Proof. See proof of proposition 9.13 in [Bo].
Let p! := ?p∗?.

Theorem 3.7 Suppose p is proper. Then p! = p∗ on Db
coh(D) and the functor p! (resp. p∗) is left adjoint

to p! ( resp p∗), i.e.
RHomD(p∗M,N ) = RHomD(M, p∗N )

RHomD(p!M,N ) = RHomD(M, p!N )

Proof. See proof of theorem 9.12 in [Bo].

Lemma 3.8 Let p : X −→ ∗ be projection to the point and ∆ : X ↪→ X × X be the diagonal. Then
Rp•RHomD(?M,N ) = p∗∆!(?M�N )

4 The Green class of M
“... we can say that there is only one formula (which we shall call

“fundamental formula”) in the whole theory of partial differential equations,
no matter to which type they belong.”

J.Hadamard, Lectures on the Cauchy problem.

0. The definition. For any M ∈ Db
coh(DX) the identity map in HomDX (M,M) provides a canonical

element
GM ∈ HdimX

(
DR(?M⊗OX M)

)
(22)

12



I will call it the Green class of M.
The right hand side of (22) is a sheaf on X, and GM is a canonical section of this sheaf. A more

concrete way to think about it is this. Choose a locally projective resolution M• for M. Take a
Cech covering {Ui} of X (in the classical or Zariski topology). Then there exists a section in the Cech
complex C

(
U•, DR(?M• ⊗OX M•)

)
with coefficients in the complex of sheaves DR(?M• ⊗OX M•)

which represents the Green class.
1. The Green class and the classical Green formula. Let P be a differential operator. Set

P =
DX
DX · P

and ?̃P =
DΩ
X

P · DΩ
X

HereDΩ
X is considered as a leftD-module with respect to the second structure. Notice thatHomD(DΩ

X , C
∞(X)) =

An(X). Let v ∈ An(X). According to the Green formula there exists an (n − 1)-form ωn−1(ϕ;P ; v) on
X such that (P ∗ is the adjoint operator on An(X))

Pϕ · v − ϕ · P ∗v = dωn−1(ϕ;P ; v) (23)

Of course neither (n − 1)-form ωn−1(ϕ;P ; v) nor its cohomology class [ωn−1(ϕ;P ; v)] are defined
canonically by (23). However there is a way to define a cohomology class in Hn−1(X,R) starting form
the Green formula. Namely, locally there exists an algebraic bidifferential operator

ωP : C∞(X)⊗O An(X)→ An−1(X) such that dωP = P ⊗ 1− 1⊗ P ∗

so ωn−1(ϕ;P ; v) := ωP (ϕ⊗v). For two different algebraic bidifferential operators ωP and ω′P there exists
an algebraic bidifferential operator

ω′′P : C∞(X)⊗O An(X)→ An−2(X) such that dω′′P = ωP − ω′P

and so on. So choosing a covering and taking a partition of unity corresponding to it we get a well
defined cohomology class [ωn−1(ϕ;P ; v)]. Below we explane how to get it without computaions in local
coordinates, using the D-modules instead. (On the other hand the approach we scetched leads to an
equivariant cohomology class of the group of diffeomorphisms of X).

Lemma 4.1 ?P[−1] is isomorphic to ?̃P, so the Green class G?P is an element of Hn−1DR(?̃P ⊗O P).

Proof. Let DX
P−→ DX be the obvious free resolution for P. It is concentrated in degrees [-1,0]. So

RHomDX (P,DΩ
X) = (DΩ

X
P∗−→ DΩ

X)[n]

(the complex is concentrated in degrees [-n,-(n-1)]), where P ∗ : Q→ P ◦Q. Recall that there is canonical
involution on DΩ

X interchanging two left DX -structures. If we choose a volume form ω this involution
sends P ⊗ ω−1 just to P t ⊗ ω−1 where P t is the transposed to P defined using ω. The lemma follows
immediately from these remarks.

Let
RP := DX

P−→ DX , RP∗ := DΩ
X

P∗−→ DΩ
X

be the resolutions for P and ?̃P. Their tensor product over O

D ⊗O DΩ P⊗1−→ D ⊗O DΩ

RP ⊗O RP∗ = 1⊗ P ∗ ↑ ↑ −P ∗ ⊗ 1

D ⊗O DΩ P⊗1−→ D ⊗O DΩ
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sits in degrees [−(n− 2),−n]. Let

...
d−→ RP ⊗O RP∗ ⊗O Ωn−1 d−→ RP ⊗O RP∗ ⊗O Ωn

be the de Rham complex DR(RP ⊗O RP∗). Its degree −(n− 1) part is(
D ⊗O DΩ ⊗O Ωn ⊕ D ⊗O DΩ ⊗O Ωn

)
⊕ D ⊗O DΩ ⊗O Ωn−1 (24)

Since D⊗O DΩ⊗O Ωn = D⊗O D, there is a canonical element (1⊗ 1, 1⊗ 1) in the left summand of (24).
Choose a covering {Ui} of X. Consider the Cech complex

C
(
{U•}, DR(RP ⊗O RP∗)

)
An −(n− 1)-cocycle G̃M in this complex such that

the component in C
(
Ui, (D ⊗O DΩ ⊗O Ωn ⊕ D ⊗O DΩ ⊗O Ωn)

)
is (1⊗ 1, 1⊗ 1)

represents the Green class. Its existence follows from general theory.
Let ω(i)

n−1 be the componenet of G̃M in C(Ui,D ⊗O DΩ ⊗O Ωn−1), and ω
(i,j)
n−2 the component in

C(Ui,j ,D⊗O DΩ ⊗O Ωn−2). Then dω(i,j)
n−2 = ω

(i)
n−1 − ω

(j)
n−1. To relate this cocycle with the discussion in s.

4.1 notice that ω(i)
n−1 can be vied as an ”algebraic bidifferential operator”.

2. The Green formula and the Bar construction. Let E1 and E2 be vector bundles over an
n-dimensional manifold X and E1 P−→ E2 be a differential operator. Set Vi := Ei

∗ ⊗ An. There are
canonical pairings

Γ0(X,Ei)⊗ Γ(X,Vi) −→ R (ϕ, g ⊗ ω) −→
∫
X

(ϕ, g)ω

So one has the adjoint operator V1
P∗←− V2. It is a differential operator of the same order as P uniquely

defined by the property (ϕ1, P
∗v2) = (Pϕ1, v2).

Now suppose we have a sequence (not necessarily a complex) of differential operators

E0 P1−→ E1 P2−→ ...
Pk−→ Ek

Consider the sequence of adjoint differential operators

V0
P∗1←− V1

P∗2←− ... P∗k←− Vk

Theorem 4.2 For any k there exists forms ωn−k(ϕ0;P1, ..., Pk; vk) such that ωn(ϕ; 1; v) := ϕ · v and

dωn−k(ϕ0;P1, ..., Pk; vk) = ωn−k+1(P1ϕ0;P2, ..., Pk; vk)+

k−1∑
i=1

(−1)iωn−k+1(ϕ0;P1, ..., Pi ◦ Pi+1, ..., Pk; vk) + (−1)kωn−k+1(ϕ0;P1, ..., Pk−1;P ∗k vk)

3. How to compute the Green class. Let us call a D-module M excellent if the object ?M is
concentrated in just one degree, i.e. Hi(?M) = 0 for all i but one. By the Roos theorem this degree is
−dM. In this case set ?̃M := H−dM(?M). Consider a locally free resolution of a D-module M:

P• = {P−k −→ ... −→ P−2 −→ P−1 −→ P0}

Let
?P• = {∗(P0) −→ ∗(P1) −→ ∗(P2) −→ ... −→ ∗(Pk)}[dX ]
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be the dual complex. Then E• := HomD(P•, C∞(X)) is a complex of differential operators between
vector bundles:

E0 P1−→ E1 P2−→ ...
Pk−→ Ek

The adjoint complex

V• := {Vk
P∗k−→ Vk−1

P∗k−1−→ ...
P∗1−→ V0}

is canonically isomorphic to HomD(?P•, C∞(X))[−dX − k].
Suppose that a D-module M is excellent and admits a locally free resolution of the minimal possible

length k = dM. (This usually happen in integral geometry). Then

Sol(M, C∞(X)) = KerP1 and Sol(∗̃M, D′(X)) = KerP ∗k

Therefore for any ϕ0 ∈ KerP1 and vk ∈ KerP ∗k one has dωn−dM(ϕ0;P•; vk) = 0

Theorem 4.3 The cohomology class of the form ωn−dM(ϕ0;P•; vk) coincides with the Green class GM(ϕ0; vk).

Proof. It is similar to the proof of lemma (4.1). Since P−i is a locally free D-module, there is a
canonical element 1i in

P−i ⊗O HomD(P−i,DΩ)⊗ Ω (25)

Namely, locally P−i = D ⊗C V , so (25) is

V ⊗C V
∗ ⊗C D ⊗O HomD(D,DΩ)⊗ Ω = End(V )⊗C D ⊗O D

and we take IdV ⊗1⊗1. A 0-cycle in DR(P⊗O ?P) whose component in P⊗O ?P⊗OΩ is
∑

1i represents
the Green class.

5 General linear maps and natural linear maps between solu-
tion spaces

Denote by RHomc(·, ·) the RHom with compact supports in the category of sheaves. For M,N ∈
Db(DX) set

RHomc
DX (M,N ) := RΓc(X;RHomDX (M,N ))

We will define a canonical morphism

RHomc
D(?M1 �M2, D

′(X1 ×X2)) ⊗ RHomD(M1, C
∞(X1)) −→ (26)

RHomD(M2, D
′(X2))[−n]

Any linear map
RHomD(M1, C

∞(X1)) −→ RHomD(M2, D
′(X2))[−n] (27)

continuous in an appropriate topology is given by a unique element in

RHomc
D(?M1 �M2, D

′(X1 ×X2)) (28)

( this follows from lemma (5.1)), so the space (28) gives us the general linear maps (27). Our goal in this
paper is to construct and study an interesting subspace in (28), the subspace of natural linear maps.

To make more clear the relation with natural functionals we will spell the construction of the map
(26) using the Green class

GM ∈ HdimX(DR(?M⊗OM)) (29)

and using the canonical morphism in Db(DX)

iM : OX −→ ?M⊗OX M (30)
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They are, of cource, equivalent. To clarify the main point we will start from the case when X2 is a point.
1. The canonical pairing via the Green class. Let ∆X be the orientation sheaf of X. Set

D̃′(X) := D′(X)⊗Z ∆X . We will define the canonical pairing

RiHomc
DX (?M, D̃′(X))⊗Rn−iHomDX (M, C∞(X)) −→ C

If Ai,Bj are sheaves on X, a ∈ RiHom(A1,A2) and b ∈ RjHom(B1,B2) then the tensor product over C
provides an element

a⊗C b ∈ Ri+jHom(A1 ⊗C B1,A2 ⊗C B2)

If Ai,Bj are sheaves of O-modules on X we can make a tensor product over O:

a⊗O b ∈ Ri+jHom(A1 ⊗O B1,A2 ⊗O B2)

Suppose X is a smooth variety over R of dimension n and

v ∈ RiHomc
DX (?M, D′(X)), f ∈ Rn−iHomDX (M, C∞(X))

Their tensor product over OX is an element

v ⊗O f ∈ RnHomDX (?M⊗OM, D̃′(X)⊗O C∞(X)) (31)

So the multiplication m : D̃′(X)⊗OX C∞(X) −→ D̃′(X) leads to an element

m(v ⊗O f) ∈ Ri+jHomDX (?M⊗OM, D̃′(X))

Applying this element to the Green class (29) we get a cohomology class

m(v ⊗O f)(GM) ∈ Hn
c

(
DR(D̃′(X)[n]

)
= Hn

c (X̃,C) = C

where X̃ = X if X is orientable and it is a two fold covering given by the orientation class if it is not.
2. The canonical pairing via the morphism iM.. Taking the Koszule resolution of the D-module

OX we see that the complex of sheaves RHomDX (OX , D′(X)) is canonically quasiisomorphic to the De
Rham complex of currents on X:

D′(X) d−→ D′(X)⊗OX Ω1
X

d−→ ...
d−→ D′(X)⊗OX Ωn−1

X
d−→ D′(X)⊗OX ΩnX

(the last group sitting in degree n). If we take the RHom’s with compact support we get the De Rham
complex of currents with compact support.

There is the trace map given by integration over the fundamental class of X:∫
X

: RnHomc
DX (OX , D̃′(X)) −→ C

The composition of the morphism iM (30) with the element m(v ⊗O f) (31) gives

m ◦ iM(v ⊗O f) ∈ RnHomc
DX (OX , D̃′(X))

Applying
∫
X

we get a pairing

v ⊗ f 7−→
∫
X

m ◦ iM(v ⊗O f) ∈ C

Recall that there is the Grothendieck duality theory for topological vector spaces [Gr]. In particular
C∞(X) has a natural topology of a Fréchet nuclear space, and D′0(X) has a natural topology of a dual to
a Fréchet nuclear space, so they are topologically dual. An immediate consequence of this is the following
simple duality lemma. (For a more general result see theorem 6.1 in [[KS]).

16



Lemma 5.1 Suppose X is a smooth variety over R of dimension n. Then

RiHomDX (M, C∞(X)) (32)

has a topology of a Fréchet nuclear space and

Rn−iHomc
DX (?M, D′(X)) (33)

has a topology of a dual to a Fréchet nuclear space. The spaces (32) and (33) are dual to each other.

Proof. Consider first the classical case of a single differential operator. Let P be a differential operator
acting on smooth functions and P ∗ the adjoint acting on the distributions with compact supports:

C∞(X) P−→ C∞(X)

Dn
0 (X) P∗←− Dn

0 (X)

The canonical pairing boils down to the obvious duality between KerP and the closure of CokerP ∗, and
the closure of CokerP and KerP ∗. The general statement for anyM∈ Db(DX) we get similarly taking
a locally projective resolution.

3. A construction of the map (26). Let RHomc1 be the RHom with compact supports along
the factor X1. Choose

K ∈ RHomc1
D (?M1 �M2, D

′(X1 ×X2)) f ∈ RHomD(M1, C
∞(X1))

Their product K ⊗OX1
f over X1 belongs to

RHomc1
DX1×X2

(
?M1 ⊗OX1

M1 �M2, D̃
′(X1)⊗OX1

C∞(X1) �D′(X2)
)

Using the multiplication map

mX1 : D̃′(X1)⊗OX1
C∞(X1) �D′(X2) −→ D̃′(X1) �D′(X2)

we get a class

mX1(K ⊗OX1
f) ∈ RHomc1

DX1×X2

(
?M1 ⊗OX1

M1 �M2, D̃
′(X1) �D′(X2)

)
The canonical morphism iM1 : OX1 −→ ?M1 ⊗OX1

M1 provides an element

(mX1 ◦ iM1)(K ⊗OX1
f) ∈ RHomc1

DX1×X2

(
OX1 �M2, D̃

′(X1) �D′(X2)
)

Applying
∫
X1

: RnHomc
DX1

(OX1 , D̃
′(X1)) −→ C we get

K̄(f) ∈ RHomDX2
(M2, D

′(X2))

4. Natural functionals. Recall that Rn−mHomc(C,∆X) = Hm(X,C) and the Poincare duality is
given by

RiHom(C,C)⊗Rn−iHomc(C,∆X) −→ RnHomc(C,∆X)
R
X−→ C

The first arrow is the composition of Hom′s. Tensor product over C provides a canonical map

RjHomc(C,∆X) ⊗ RiHomDX (M, D′(X)) −→ Ri+jHomc(M, D̃′(X))

Combining it with the canonical pairing we get a map

< ·, ·, · >M:
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Hi+j(X,C)⊗RiHomDX (?M, D′(X))⊗RjHomDX (M, C∞(X)) −→ C (34)

By definition the natural functionals on the spaceRjHomDX (M, C∞(X)) are the functionals< γ, v, · >M
provided by a homology class γ ∈ Hi+j(X,C) and v ∈ RiHomDX (?M, D̃′(X)).

5. Natural linear maps. There is a map

RΓc(X1,∆X1) ⊗ HomD(?M1 �M2, D
′(X1 ×X2)) −→

RHomc
D(?M1 �M2, D

′(X1 ×X2))

So we get a canonical morphism

RΓc(X1,∆X1)⊗RHomD(?M1 �M2, D
′(X1 ×X2))⊗RHomD(M1, C

∞(X1)) −→

RHomD(M2, D
′(X2))[−n] (35)

In particular it induces a map

Hi+j(X1,Z)⊗Ri+kHomDX1×X2
(?M1 �M2, D

′(X1 ×X2))⊗RjHomD(M1, C
∞(X1)) −→

RkHomDX2
(M2, D

′(X2)) (36)

By definition a natural linear map

K̄γ : RjHomDX1
(M1, C

∞(X1)) −→ RkHomDX2
(M2, D

′(X2))

is given by a ”kernel”

K = K(x1, x2) ∈ Ri+kHomDX1×X2
(?M1 �M2, D

′(X1 ×X2))

and γ ∈ Hi+j(X1,Z).
6. Examples. Suppose M is an excellent DX -module, m := dM. Recall that ?̃M := H−m(?M) is

the dual system to M. Taking k = m, i = 0, l = m we get

HomD(M, C∞(X))⊗HomD(?̃M, D′(X))⊗Hm(X,R) −→ R

Let G̃M(·, ·) be a cocycle in DR(?̃M⊗OM) representing the Green class. Let f(x) be a smooth solution
of the system M. Choose a distributional solution v(x) of ?̃M. Then we get a closed differential form
G̃M(v(x), f(x)) of degree dM on X. Choose a cycle γ of dimension dM in X. Then

< γ, v, f >=
∫
γ

G̃M(v(x), f(x))

is a functional on smooth solutions of M.
Example 0. SupposeM = DX . Then ?M = DΩ

X [n] and ?̃M = DΩ
X . Recall thatHomc

D(DΩ
X , D

′(X)) =
Dn

0 (X). We get the usual paring C∞(X)⊗Dn
0 (X) −→ C.

The following examples show a wider class of functionals on solution spaces then the natural func-
tionals we just defined above. The point is that sometimes we can integrate the differential form
G̃M(v(x), f(x)) not only over cycles, but also over some chains (which do not represent a homology
class in general sense) still getting a functional on smooth solutions of a system M.

Example 1. LetM be a D-module on Rn corresponding to the system x1 ·f = x2 ·f = ... = xm ·f = 0,
0 < m < n. Then

RHomi
D(M, C∞(X)) = 0 for i 6= m

RHomm
D (M, C∞(X)) =

C∞(X)
(C∞(X) · xi)

and
RHomi

D(M, D′(X)) = 0 for i 6= 0
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HomD(M, D′(X)) = δ(x1)δ(x2)...δ(xm) ·D′(X)

So there is a natural pairing

RHomm
D (M, C∞(X))⊗HomD(M1, D

′(X)) −→ R

It should correspond to the case i = 0, j = m, k = m. However Hm(Rn,R) = 0 in any topological sense.
Comparing the general and natural functionals. Let P be a differential operator on X. Recall that the

general functionals on KerP we get from the closure of CokerP ∗, see the proof of proposition (5.1). The
natural functionals we get in a different way. Take f ∈ KerP and v ∈ D′(X), v ∈ KerP ∗. Notice that
if, for example, P is an operator with constant coefficients, then the restriction of KerP ∩D′0(X) = 0, so
it is essential that v is not necessarily compactly supported. Then make the Green class [ωn−1(v;P ; f)]
and integrate it over a homology class [γ]. A simplest example is given in the example 2 below.

An advantage of natural functionals on KerP is that they correspond to ”functions”, i.e. elements of
the subspace KerP ∗, rather then to elements of the quotient CokerP ∗.

Example 2. Let La be the system (
∑n
i=1 xi∂xi−a)f(x) = 0 on Rn\0. Then ?̃La = L−a−n. Consider

the following differential (n− 1)-form

σn(x, dx) :=
n∑
i=1

(−1)i−1xidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn (37)

Then
G̃La(v(x), f(x)) = v(x)f(x)σn(x, dx)

Let γ be an (n− 1)-cycle generating Hn−1(Rn\0) . Then∫
γ

v(x) · f(x)σn(x, dx) (38)

provides a nondegenerate pairing between the smooth solutions of La and L−a−n.
Example 3. Consider Cn as a real manifold. Let La,b be the following system in Cn\0:

(
n∑
i=1

zi∂zi − a)f(z, z̄) = 0, (
n∑
i=1

z̄i∂z̄i − b)f(z, z̄) = 0

Then ?̃La,b = L−a−n,−b−n. Then

G̃La,b(v(z, z̄), f(z, z̄)) = v(z, z̄) · f(z, z̄) · σn(z, dz) ∧ σn(z̄, dz̄)

Let Γ be a chain intersecting any one dimensional subspace in Cn with multiplicity one. Then∫
Γ

v(z, z̄)f(z, z̄)σn(z, dz) ∧ σn(z̄, dz̄) (39)

provides a pairing between the solutions of La,b and L−a−n,−b−n. HoweverH2n−2(Cn\0) = H2n−2(S2n−1) =
0!

A chain Γ can be considered as a discontinuous ”section ” of the Hopf bundle Cn\0 −→ CPn−1. A
better way to think about this integral is the following. The form we integrate can be pushed down to
CPn−1, so we integrate over the fundamental cycle.

7. Composition of natural maps between smooth solution spaces. We can not define in
general a morphism

RHomD(M1, D
′(X1)) −→ RHomD(M2, D

′(X2))

using distributional kernels because of the lack of multiplication of distributions, and a priory there is no
way to compose operators

RHomD(M1, C
∞(X1)) −→ RHomD(M2, D

′(X2))
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and
RHomD(M2, C

∞(X2)) −→ RHomD(M3, D
′(X3))

However the natural linear maps constructed using smooth kernels can be composed. Namely, suppose

K12 ∈ RHomD(?M1 �M2, C
∞(X1 ×X2)), γ1 ∈ Hl1(X1,R)

K23 ∈ RHomD(?M2 �M3, C
∞(X2 ×X3)), γ2 ∈ Hl2(X2,R)

They define the corresponding natural maps

K̄γ1
12 : RHomD(M1, C

∞(X1)) −→ RHomD(M2, C
∞(X2))

K̄γ2
23 : RHomD(M2, C

∞(X2)) −→ RHomD(M3, C
∞(X3))

Their composition is given by the data

K23 ◦K12 ∈ RHomD(?M1 �M3, C
∞(X1 ×X3)), γ1 ∈ Hl1(X1,R)

where the kernel K23 ◦K12 is constructed as follows. Let

∆2 : X1 ×X2 ×X3 ↪→ X1 ×X2 ×X2 ×X3

be the diagonal imbedding and π2 : X1 ×X2 ×X3 −→ X1 ×X3 be the projection. Then

∆2
!C∞(X1 ×X2 ×X2 ×X3) = C∞(X1 ×X2 ×X3)[−dX2 ]

and
Hl(X2,Z) −→ RdX2−lHomD(π2∗C

∞(X1 ×X2 ×X3), C∞(X1 ×X3))

Therefore one has canonical morphism

Hl(X2,Z) −→ R−lHomD(π2∗∆2
!C∞(X1 ×X2 ×X2 ×X3), C∞(X1 ×X3))

According to lemma 3.8 one has GM ∈ p∗∆!(M� ?M). Therefore

?M1 �M3
id�GM�id−→ π2∗∆2

!(?M1 �M2 � ?M2 �M3) (40)

There is a canonical map

RHomD(?M1 �M2, C
∞(X1 ×X2))⊗RHomD(?M2 �M3, C

∞(X2 ×X3)) =

RHomD(?M1 �M2 � ?M2 �M3, C
∞(X1 ×X2 ×X2 ×X3))

GM×γ2−→
RHomD(?M1 �M3, C

∞(X1 ×X3))

provided by the morphism (40) and morphism

γ2 ∈ R−l2HomD(π2∗∆2
!C∞(X1 ×X2 ×X2 ×X3), C∞(X1 ×X3))

Theorem 5.2 The kernel K23 ◦K12 coincides with (GM × γ2)(K23 ⊗K12).

Proof. Follows immediately from the definitions.
Example. Suppose Mi are excellent DXi-modules. In this case usually the natural smooth kernels

are just functions
K12(x1, x2) ∈ HomD(?̃M1 �M2, C

∞(X1 ×X2))

and
K23(x2, x3) ∈ HomD(?̃M2 �M3, C

∞(X1 ×X2))

and the composition is defined by the natural kernel

K13(x1, x3) =
∫
γ2

GM2

(
K12(x1, x2),K23(x2, x3)

)

20



6 Natural linear maps for excellent D-modules.

1. The general scheme. Let M and N be excellent D-modules on manifolds X and Y , i.e. ?̃M :=
(?M)[−dM] is a D-module. Let cM := codimSSM = dimX − dM. Then solutions

f ∈ HomD(M, C∞(X)) and g ∈ HomD(?̃M, D′(X))

provide a homomorphism

HcMDR
(
?̃M⊗OM

)
f̄⊗ḡ−→ HcMDR

(
C∞(X)⊗O D′(X)

)
m−→ HdMD′•(X)

The Green class ofM goes under this map to a cohomology class of degree dM on X. Recall that we put
DR(M) in degrees [−dimX, 0], while the smooth de Rham complex A•(X) is sitting in degrees [0, dimX].

Let us define a natural linear map

I : Sol(M, C∞(X)) −→ Sol(N , D′(Y ))

by a kernel
KI(x, y) ∈ Sol(?̃M�N , D′(X × Y )) (41)

and a cycle γX of dimension dM in X as follows. Let G̃M(·, ·) be a cocycle in the Cech complex of a
covering of of X with coefficients in DR(?̃M⊗OM) representing the Green class. (In integral geometry
one may usually take a cocycle in the complex DR(?̃M⊗OM)). Using solutions KI(x, y) of ?̃M (where
y is considered as a parameter) and f(x) of M we get a closed differential form G̃M(KI(x, y), f(x)) of
degree dM on X. Set

f(x) 7−→
∫
γ

G̃M(KI(x, y), f(x)) ∈ Sol(N , D′(Y )) (42)

Under certain assumption on the wave front of the kernel KI(x, y), which we will assume below, the
integral over cycle γ makes sense and the image of (41) lies in C∞(Y ). Then a (natural) inverse for I is
an integral transformation

J : Sol(N , C∞(Y )) −→ Sol(M, C∞(X))

J : ϕ(x) 7−→
∫
γY

G̃N (KJ(x, y), ϕ(y)) (43)

defined via a certain dN -cycle γY in Y and a kernel

KJ(x, y) ∈ Sol(M� ?̃N , D′(X × Y )) (44)

This data defines also a transformation

J t : Sol(?̃M, C∞(X)) −→ Sol(?̃N , C∞(Y ))

g(x) 7−→
∫
γX

G̃M(g(x),KJ(x, y))

There is a canonical map

< ·, ·, · >M : Sol(?̃M, C∞(X))⊗ Sol(M, C∞(X))⊗HdM(X,R) −→ R (45)

< g, f, γX >M :=
∫
γX

G̃M(g(x), f(x))

So if we choose a homology class γX we get a pairing

< g, f >M :=< g, f, γX >M (46)

and a similar one for N .
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Theorem 6.1 (the Plancherel formula) . Let J be a natural inverse for I: J ◦ I = idX . Then for
f ∈ Sol(M, C∞(X)), g ∈ Sol(?̃M, C∞(X)) one has

< g, f, γX >M = < J tg, If, γY >N

Proof. < g, f, γX >M = < g, J ◦ If, γY >N . So the theorem follows from

Lemma 6.2 Let ϕ ∈ Sol(N , C∞(Y )) and g ∈ Sol(?̃M, C∞(X)). Then

< g, Jϕ, γX >M = < J tg, ϕ, γY >N (47)

Proof. The Green class is multiplicative with respect to the � - product. So we can set G̃M�N :=
G̃M � G̃N . Consider the following solutions

g(x) � ϕ(y) ∈ Sol(?̃M� ?̃N , C∞(X × Y ))

KJ(x, y) ∈ Sol(M�N , D′(X × Y ))

They are solutions to the dual systems. So there is a pairing

< g(x) � ϕ(y),KJ(x, y), γX × γY >M�N

We can evaluate it computing first the pairing along X and then along Y . In this case we get the
right-hand side of (47). Computing first pairing along Y and then along X we get the left-hand side of
(47).

The kernel KJ is a much more simple (and fundamental) object then the actual integral transformation
J . The reasons are the following:

1) The kernel KJ is a canonically defined distribution, while the formula for Jϕ(x) depends on a
cocycle G̃N representing the Green class.

2) Explicit calculation of cocycle G̃N can be a nontrivial problem and so the final formula for the
right-hand side of (43) could be quite complicated even for a very simple kernel KJ .

So the problem of inversion of the transformation I splits on 3 steps:
Step 1. Find a distribution (44).
Step 2. Compute a cocycle G̃N for the Green class.
Step 3. Find a cycle γY .
The distribution (44) should be uniquely defined if exist. However it may not exist. The Green class

always exist. Different cocycles representing it together with different choices of cycles γY provides the
diversity of concrete inversion formulas. I will demonstrate below how this general scheme works in the
simplest concrete problems.

2. The Fourier transform of homogeneous functions and the Radon transform. As every-
body knows the Fourier transform in an n-dimensional real vector space Vn is defined by the formula

S(Vn) −→ S(V ∗n ); f(x) −→ f̃(ξ) :=
∫
f(x)e2πi<x,ξ>dnx

The inverse operator is f(ξ) −→
∫
f(ξ)e−2πi<x,ξ>dnξ. Using the Plancherel formula one can define the

Fourier transform of generalized functions.
Let Φ+

λ (RPn−1) (resp. Φ−λ (RPn−1)) be space of even (resp. odd) smooth homogeneous functions f(x)
on Rn\0 of degree λ: f(ax) = |a|λf(x), a > 0. Also let Ψλ(Vn) be the space of homogeneous distribution
of degree λ in Vn, and Ψλ(Vn) = Ψ+

λ (Vn)⊕Ψ−λ (Vn) is the decomposition on even and odd parts.
Then Φλ(RPn−1) ⊂ Ψλ(Vn). This inclusion is not an isomorphism for integral λ = −k, k ≥ n. One

has
Ψ−k(Vn)/Φ−k(RPn−1) = Sk−n(Vn) = {δ − functions of degree −k at 0}

The Fourier transform of generalized functions provides an isomorphism

F̃λ : Ψ±−λ−n(Vn) −→ Ψ±λ (V ′n)
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Restricting to Φ±−λ−n(RPn−1) we get a map

Fλ : Φ±−λ−n(RPn−1) −→ Φ±λ ((RPn−1)′)

It is remarkable that there is another way to define the operator Fλ. Let me recall that the space
of homogeneous degree λ generalized function on R is 2-dimensional and splits on the even and odd
components (with respect to the involution x→ −x) generated by

|x|λ

Γ(λ+1
2 )

and
|x|λsgnx
Γ(λ+2

2 )

They are both analytic on λ on the whole complex plane. One has

|x|λ

Γ(λ+1
2 )
|λ=−2k−1 =

(−1)kk!
(2k)!

· δ(2k)(x); (48)

|x|λsgnx
Γ(λ+2

2 )
|λ=−2k =

(−1)k(k − 1)!
(2k − 1)!

· δ(2k−1)(x) (49)

Let γn−1 be a cycle generating Hn−1(Rn\0; Z). The kernel

K+
λ (ξ, x) :=

| < ξ, x > |λ

Γ(λ+1
2 )

and the cycle γn−1 defines the operator

I+
λ : Φ−λ−n(RPn−1) −→ Φλ((RPn−1)′)

I+
λ : f(x) −→ 1

2

∫
γn−1

f(x)
| < ξ, x > |λ

Γ(λ+1
2 )

σn(x, dx)

The odd kernel

K−λ (ξ, x) :=
| < ξ, x > |λ · sgn(< ξ, x >)

Γ(λ+2
2 )

defines an integral transformation

(I−λ f)(ξ) =
∫
γn−1

f(x)K−λ (ξ, x)σn(x, dx)

Proposition 6.3 F+
λ = π1/2+λΓ(−λ2 ) · I+

λ , F−λ = i · π1/2+λΓ(−λ2 ) · I−λ .

Set

fλ(x) := πλ/2
|x|λ

Γ(λ+1
2 )

, gλ(x) := πλ/2
|x|λsgn(x)

Γ(λ+2
2 )

Lemma 6.4
F(fλ(x)) = f−1−λ(ξ), F(gλ(x)) = i · g−1−λ(ξ) (50)

Proof. See p. 173 in [GS] for an equivalent formula.
Proof of the proposition. Using the polar coordinates x = r · s where s ∈ Sn−1, |s| = 1, we

have dnx = rn−1drdsn−1 where dsn−1 is the standard volume form on the unit sphere in Rn. Then for
f(x) ∈ Φ−λ−n(RPn−1) we have∫

Rn
f(x)e2πi<ξ,x>dnx =

1
2

∫ ∞
−∞
|r|−λ−ne2πir·(ξ,s)rn−1dr

∫
Sn−1

f(e)dsn−1 =

1
2
πλ+1/2Γ(

−λ
2

)
∫
Sn−1

f(e)
| < ξ, s > |λ

Γ(λ+1
2 )

dsn−1 = π−λ−1/2Γ(
−λ
2

)I+
λ f

The proof in the case of odd functions is completely similar.
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Corollary 6.5

I+
−λ−n ◦ I

+
λ =

πn

Γ(−λ2 )Γ(λ+n
2 )
· Id

I−−λ−n ◦ I
−
λ =

πn

Γ(−λ2 )Γ(λ+n
2 )
· Id

In particularly using (48) we see that I−1 is just a projectively invariant version of the Radon trans-
form:

(I−1f)(ξ) =
∫
γm

f(x)δ(< ξ, x >)σm+1(x, dx)

and the inversion formula looks as follows. When n is even

f(y) =
(−1)

n−2
2

2(2π)n−2

∫
γn−1

f̂(ξ)δ(n−2)(< ξ, y >)σn(ξ, dξ)

When n is odd

f(y) =
(−1)n/2−1(n− 2)!

2(2π)n−1

∫
γn−1

f̂(ξ)(< ξ, y >)−n+1σn(ξ, dξ)

The operator I+
−λ−n is defined on the space of all homogeneous degree λ functions. However it is zero

on the subspace of odd functions. The reason is this. A sphere in Rn\0 representing the generator in
Hn−1(Rn\0) has canonical coorientation ”out of the origin”. The involution x → −x preserves it. So it
acts on the class γn−1 in the same way as it acts on the orientation class of Rn and hence on the form
σn−1(x, dx): by multiplication by (−1)n. So if f(x) is an odd function the integral

∫
γn−1

f(x)σn(ξ, dξ)
vanish because the contributions of the opposite parts of the sphere cancel each other.

From our point of view these results looks as follows. Let

Lλ :=
n∑
i=1

xi∂xi − λ

be the Euler operator. Denote the corresponding D-module by Lλ. Then Φλ(RPn−1) is the space of
smooth even solutions of Lλ.

It follows from lemma (4.1) that ?Lλ = L−λ−n[1] and the Green class of Lλ is

GLλ(ϕ; v) = ϕ · v · σn(x, dx)

So pairing (46) looks in this case as follows:

Φλ(RPn−1)⊗ Φn−λ(RPn−1) −→ R

f(x)⊗ g(x) 7−→
∫
γn−1

f(x)g(x)σn(x, dx)

Notice that
K±λ (x, ξ) ∈ Sol

(
Lλ � Lλ,D′(Rn\0× Rn\0)

)±
(51)

One has Lλ = ?̃L−λ−n, so the integral transformation I±λ is just the natural linear map provided by the
kernel (51).

3. The complex space. Let λ and µ be complex numbers such that n := λ− µ is an integer. Let

Φλ,µ(CPm) := {f | f(az, āz̄) = aλāµf(z, z̄)}
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be the space of smooth homogeneous function in Cm+1\0 of the bidegree λ, µ. Consider the kernel

KC
λ (x, ξ) =

< ξ, x >λ · < ξ̄, x̄ >µ

Γ( s+|n|+2
2 )

where s = λ+ µ. It is a homogeneous generalized function. It defines an integral transformation

IC
λ,µ : Φ−λ−m−1,−µ−m−1(CPm) −→ Φλ,µ((CPm)′)

f(z, z̄) −→
∫

CPm
f(z, z̄)KC

λ (z, ξ)σm(z, dz) ∧ σm(z̄, dz̄)

Here the integral has the following meaning. The form we integrate can be pushed down to CPm, so we
integrate over the fundamental cycle. One has (see [GGV]).

KC
λ (z, ξ)|λ=−k−1,µ=−l−1 =

π(−1)k+l+1j!
k!l!

δk,l(z, z̄)

where j = min(k, l). In particularly applying the above results to the case k = 0, l = 0 we come to the
Radon transform of smooth homogeneous functions of degree (−m,−m) in CPm:

IC
m : Φ−m,−m(CPm) −→ Φ−1,−1((CPm)′)

(IC
mf)(ξ) = f̂(ξ) = (i/2)m

∫
CPm

f(x)δ(< ξ, x >)σm(x, dx) ∧ σm(x̄, dx̄)

The projectively invariant inversion formula is

(JC
mf)(y) = cC

m

∫
CPm

f̂(ξ)δ(m−1,m−1)(< ξ, y >)σm(ξ, dξ) ∧ σm(ξ̄, dξ̄)

where cC
m = (−1)m−1(m− 1)!(π)−2m+2(i/2)m.

7 Integral geometry on the family of spheres

1. The integral transformation. Let

Sm = {x2
1 + ...+ x2

m+1 − x2
m+2 = 0}/R∗

be a sphere in RPm+1. The stereographic projection identifies the family of its hyperplane sections with
the family of all spheres in Rm.

Let Qm+1 := {x2
1 + ...+ x2

m+1 − x2
m+2 = 0} be a cone in Rm+2\0. It has two connected components:

Q+
m+1 in the half space xm+2 > 0 and its opposite Q−m+1.

Denote by Φλ(Sm) the space of all smooth homogeneous functions of degree λ on the cone Q+
m+1. Let

SO(m+ 1, 1)0 be the connected component of unity of the group O(m+ 1, 1). It acts on the cone Q+
m+1.

Let βm be a hyperplane section of Q+
m+1 which is isomorphic to a sphere. The orientation of Rm+2

provides an orientation of βm: the cycle βm is cooriented out of the origin in the cone, and the cone
itself coorientated outside of the convex component in Rm+2. Let β+

m be an oriented this way cycle. Its
homology class is a generator of Hm(Q+

m+1,Z).

Lemma 7.1 There is a nondegenerate SO(m+ 1, 1)0 - invariant pairing

< ·, · >Sm : Φ−λ−m(Sm)⊗ Φλ(Sm) −→ R

defined by the formula

< f, g >Sm :=
∫
β+
m

δ(x2
1 + ...+ x2

m+1 − x2
m+2)f(x)g(x)σm+2(x, dx)
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Here we integrate the closed m-form on Q+
m+1. By definition it is the restriction to Q+

m+1 of any form
αm satisfying the condition

d(x2
1 + ...+ x2

m+1 − x2
m+2) ∧ αm = f(x)g(x)σm+2(x, dx)

The restriction is well defined on Q+
m+1.

Proof. The SO(m+ 1, 1)0 - invariance is obvious.
Let ξ1, ..., ξm+2 be coordinates in (Rm+2)′ dual to xi and < ξ, x >=

∑
ξixi. Consider the kernel

K+
λ (ξ, x) :=

| < ξ, x > |λ

Γ(λ+1
2 )

(52)

Set

∆ := ∂2
ξ1 + ...+ ∂2

ξm+1
− ∂2

ξm+2
; Lλ :=

m+2∑
i=1

ξi∂ξi − λ

Let us denote by Mλ the D-module on Rm+2 corresponding to the system

Mλ : Lλf = 0, (x2
1 + ...+ x2

m+1 − x2
m+2)f = 0

and by Nλ the D-module on (Rm+2)′corresponding to the system of differential equations

Nλ : Lλϕ = 0, ∆ϕ = 0

Then
K+
λ (ξ, x) ∈ Sol

(
Mλ �Nλ, D′(Rm+2 × (Rm+2)′)

)+

is an even solution of this system. Notice that Mλ = ?̃M−λ−m. So the kernel K+
λ (ξ, x) defines an

operator
I+
λ : Φ−λ−m(Sm) −→ Sol(Nλ)+; (53)

(I+
λ f)(ξ) =

∫
β+
m

δ(x2
1 + ...+ x2

m+1 − x2
m+2)f(x)K+

λ (ξ, x)σm+2(x, dx)

Consider the following domain:

Γ̃0 := {ξ|ξ2
1 + ...+ ξ2

m+1 − ξ2
m+2 = 0} Γ̃1 := {ξ|ξ2

1 + ...+ ξ2
m+1 > ξ2

m+2}

Remark. The functions I±λ f(ξ) are a priory smooth only in the complement to the cone Γ̃0. Indeed,
the integral transform I+

λ , for instance, is written in affine coordinates as

I+
λ (f)(ξ) =

∫
f(x1, ..., xm+1)δ(x2

1 + ...+ x2
m+1 − 1)

| < ξ′, x > +s|λ

Γ(λ+1
2 )

dm+1x

where ξ = (ξ′, s) and < ξ′, x >=
∑
ξixi. Set ξ1 = 1, ξi = 0 for i > 1. Then

I+
λ (f)(1, 0, ..., 0; s) =

∫
f̃(x1)

|x1 + s|λ

Γ(λ+1
2 )

dx1

where f̃(x1) :=
∫
f(x)δ(x2

1+...+x2
m+1−1)dx2...dxm+1. The function f̃(x1) vanishes outside of the segment

[−1, 1], smooth inside of it but not smooth near x1 = ±1. The integral
∫
|x|λf(x)dx is regularized near

x = 0 in assumption that the function f(x) is smooth near zero.
Similarly the kernel

K−λ (ξ, x) :=
| < ξ, x > |λ · sgn(< ξ, x >)

Γ(λ+2
2 )
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is an odd solution of the system Mλ �Nλ. It defines an intertwiner operator for the group O(m+ 1, 1):

I−λ : Φ−λ−m(Sm) −→ Sol(Nλ)−;

Notice that
Φ±λ (Sm) = Sol

(
Mλ|Rm+2\0, C

∞(Rm+2\0)
)±

So the operators I±λ are natural linear operators between smooth solution spaces.
In this chapter we will work with the restriction of the functions I±λ to the domain Γ̃1. Our first goal

is to invert the operator
I±λ : Φ−λ−m(Sm) −→ Sol(Nλ|Γ̃1

)±;

2. The Green class. Now we make the crucial step. Consider the following m-form:

ωm(ϕ; v) := (54)∑
1≤i<j≤m+2

(−1)i+j−1
(
ξi · εj(v · ϕ

′

ξj − v
′

ξj · ϕ)− ξj · εi(v · ϕ
′

ξi − v
′

ξi · ϕ)
)
dξ1 ∧ ...d̂ξi...d̂ξj ... ∧ dξm+2

Here εm+2 = −1 and εj = 1 if j 6= m+ 2. Let ωm+1(ϕ; ∆; v) be the Green form for the Laplacian ∆:

ωm+1(ϕ; ∆; v) =
∑

1≤j≤m+2

(−1)j−1εj(ϕξj · v − ϕ · vξj )dξ1 ∧ ...d̂ξj ... ∧ dξm+2 (55)

Then (54) is the contraction of the Green form (55) with the Euler vector field L:

ωm(ϕ; v) = −1
2
iLωm+1(ϕ; ∆; v)

Remark. More generally, for any homogeneous differential operator P with constant coefficients in
Rn the Green form for the system Pf = 0, Laf = 0 is equal to − 1

2 iLωn−1(ϕ; ∆; v).
It can be also written as follows:

ωm(ϕ; v) = [ξv, ε · ∂
∂ξ
ϕ, dξ, ..., dξ]− [ξϕ, ε · ∂

∂ξ
v, dξ, ..., dξ]

Here [ξv, ε · ∂∂ξϕ, dξ, ..., dξ] means the determinant of the following matrix:
ξ1v ε1 · ϕ

′

ξ1
dξ1 ... dξ1

ξ2v ε2 · ϕ
′

ξ2
dξ2 ... dξ2

... ... ... ... ...
ξm+2v εm+2 · ϕ

′

ξm+2
dξm+2 ... dξm+2


Lemma 7.2 The form ωm(ϕ; v) can be pushed down to Γ

Proof. An easy calculation.

Theorem 7.3 a) Na = ?̃Nb where a+ b+m = 0.
b) The form ωm(ϕ; v) represents the Green class GNa(ϕ; v) of the system Na.

Corollary 7.4 The form ωm(ϕ; v) is closed if the functions ϕ and v satisfy the following systems of
differential equations:

Laϕ = 0, ∆ϕ = 0 and Lbv = 0, ∆v = 0 where a+ b+m = 0.
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In the rest of this chapter we will use extensively this corollary (but not the fact that ωm(ϕ; v)
represents the Green class). So let me first give a straightforward proof independent of the proof of
theorem (7.3).

Proof. One has
dωm(v;ϕ) =

∑
1≤j≤m+2

(−1)j−1
(
ξj(v ·∆ϕ−∆v · ϕ)−

εj · L−m−1(v · ϕ
′

ξj − v
′

ξj · ϕ)
)
dξ1 ∧ ... ∧ d̂ξj ∧ ... ∧ dξm+2

Indeed, applying ∂
∂ξi
dξj to ωn−2(v;ϕ) we get

∑
1≤i<j≤m+2

(−1)j−1
(
ξj(v · ϕ

′′

ξiξi − v
′′

ξiξi · ϕ)− ξi
∂

∂ξi
εj · (v · ϕ

′

ξj − ϕ · v
′

ξj )−

−(j − 1)εj · (v · ϕ
′

ξj − ϕ · v
′

ξj )
)
dξ1 ∧ ... ∧ d̂ξj ∧ ... ∧ dξm+2

Similarly we compute the contribution of ∂
∂ξj

dξj and take the sum.

Proof of theorem (7.3). Consider a complex of D - modules D d−→ D2 d−→ D sitting in degrees
[-2,0] (d has degree +1) which we visualize as:

D
∆ ↗ ↘La

D D
−La−2 ↘ ↗∆

D

One has [La,∆] = −2∆, so ∆L−1 + (−L−3)∆ = 0, i.e. we get a complex.
This is a resolution of the D- module Na. Indeed, consider a filtration on D such that the degree

of x and ∂
∂x is +1. Then both La and ∆ have degree +2. Shifting the filtration in the second term of

the resolution down by 2 and in the third down by 4 we get a filtered complex. The associated graded
quotient complex is a Koszul resolution. So our complex is also a resolution. The part a) follows easyly
from this..

To calculate the Green class we use theorem (??) for this resolution. The complex ∗P• := HomD(P•,DΩ)[m+
2] is concentrated in degrees [−(m+ 2),−m] and looks as follows:

DΩ

∆ ↙ ↖L∗a

DΩ DΩ

−L∗a−2
↖ ↙∆

DΩ

A homomorphism of D-modules DX −→ C∞(X) is determined by its value at 1 ∈ DX . So one can
represent the complex HomD(P•, C∞(Rm+2)) by the following picture where ϕ0, ϕ1, ϕ

′
1, ϕ2 are the values

of the corresponding homomorphisms at 1:

ϕ1
∆ ↙ ↖La

ϕ2 ϕ0

−La−2 ↖ ↙∆

ϕ
′

1
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Similary one can make a picture for HomD(?P•, C∞(Rm+2)):

vm+1
∆ ↗ ↘Lta

vm vm+2

−Lta−2
↘ ↗∆

v
′

m+1

Recall that HomD(DΩ, C∞(X)) = Am(X). So v′s are forms of top degree. Then

(Laϕ0 · vm+1 − ϕ0 · Ltavm+1) + (∆ϕ0 · v
′

m+1 − ϕ0 ·∆v
′

m+1) =

dωm+1(ϕ0; vm+1, v
′

m+1)

and
(∆ϕ1 · vm − ϕ1 ·∆vm) + ((−La−2)ϕ

′

1 · vm − ϕ
′

1 · (−La−2)tvm) =

dωm+1(ϕ1, ϕ
′
1; vm)

where
ωm+1(ϕ0; vm+1, v

′

m+1) := ϕ0 · vm+1σm+2(ξ, dξ)+
n∑
i=1

εi

(
(
∂ϕ0

∂ξi
· v
′

m+1 − ϕ0 ·
∂v
′

m+1

∂ξi

)
(−1)i−1dξ1 ∧ ... ∧ d̂ξi ∧ ... ∧ dξm+2

and
ωm+1(ϕ1, ϕ

′

1; vm) := −ϕ
′

1 · vmσm+2(ξ, dξ)+
m+2∑
i=1

εi

(∂ϕ1

∂ξi
vm − ϕ1

∂vm
∂ξi

)
(−1)i−1dξ1 ∧ ... ∧ d̂ξi ∧ ... ∧ dξm+2

Further,
ωm+1(ϕ0; ∆vm,−Lta−2vm) + ωm+1(Laϕ0,∆ϕ0; vm) = dωm(ϕ0; vm)

where ωm(ϕ; v) is the Green form (54).
3. Construction of the inverse operator. We have defined in s. 7.1 the domain Γ̃1 = {ξ2

1 + ...+
ξ2
m+1 > ξ2

m+2}. Let Γ1 = Γ̃1/R∗+ be the manifold of all oriented rays inside Γ̃1. Its closure Γ = Γ0 ∪ Γ1

parametrizes oriented hyperplane sections of the sphere Sm (here Γ0 = Γ̃0/R∗+).
Γ = Sm+1\D+ ∪ D− where D+ is a ball {ξ2

1 + ...+ ξ2
m+1 < ξ2

m+2}/(R∗)+ and D− = −D+. Therefore
Hm(Γ,Z) = Z. Consider the cycle γm of rays in the hyperplane ξm+2 = 0. It is cooriented by the function
ξm+2 (or, more invariantly, by the choice of one of the balls D+). So orientation of Rm+2 provides an
orientation of the cycle. Denote by γ+

m the oriented this way cycle. Its homology class is a generator of
Hm(Γ,Z).

There is a nondegenerate pairing

< ·, · >Nλ : Sol(Nλ)+ ⊗ Sol(N−λ−m)− −→ R; < ϕ, v >Nλ :=
∫
γ+
m

ωm(ϕ, v)

Remark. This pairing would have being zero if ϕ and v have the same parity. Indeed, in this case
the involution ξ 7−→ −ξ multiplies the form ωm(ϕ, v) by (−1)m+2 and the cycle γm by (−1)m+1, so the
contributions to the integral coming from the antipodal parts of the cycle are canceled.

Let K be a compact hypersurface in Γ. Its homology class [K] ∈ Hn(Γ) is equal to d(K) · [γ+
M ]. The

integer d(K) is the intersection number of the class [K] with the cycle consisting of all oriented spheres
passing through a given point x ∈ Sm and tangent to a given hyperplane in TxS

m.
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According to part a) of theorem (7.3) ?̃Nλ = N−m−λ. So by the general philosophy the kernel
K−λ (ξ, x) define integral operators

J+
λ : SolC∞(N−λ−m)+ −→ Φλ(Sm) (56)

(J+
λ ϕ)(ξ) =

1
2

∫
K

ωm(ϕ;K−λ (ξ, x))

and similarly the even kernel K+
λ (ξ, x) provides operators

J−λ : SolC∞(N−λ−m)− −→ Φλ(Sm)

Notice that J+
λ is defined by an odd kernel, and J−λ by an even kernel.

Further, there are operators

(J±−λ−m)t : Φλ(Sm) −→ SolC∞(N−λ−m)∓

(J±−λ−m)t(g) =
∫
β+
m

δ(x2
1 + ...+ x2

m+1 − x2
m+2)g(x)K∓λ (x, ξ)σm+2(x, dx)

Theorem 7.5 a) These operators are intertwiners for the group SO(m+ 1, 1)0.
b) For any m-cycle K ∈ Γ one has

d(K)· < f, g >Sm= c(λ) ·
∫
K

ωm

(
I±λ f ; (J±−λ−m)tg

)
where

c(λ) =
πm+1

Γ(−λ2 )Γ(λ+m+2
2 )

c) In particular d(K) · J±−λ−m ◦ I
±
λ = c(λ) · Id.

The part b) can be viewed as the universal form of the Plancherel theorem for the integral transfor-
mation I±λ .

Proof. a) The operator J±λ is an intertwiner for the following three reasons.
1. A group element g ∈ SO(m + 1, 1)0 sends form ωm(ϕ, v) to the form ωm(g · ϕ, g · v). Indeed, the

form ωm is a cocycle representing the Green class for the system Nλ. This system as well as the volume
form in Rm+2 is invariant under the action of the group SO(m+ 1, 1)0.

2. A connected Lie group acts trivially on the homology.
In the definition of the inverse operator J−λ we can integrate over an m-cycle K̃ ⊂ (Rm+2)′ projecting

to K. So J±λ apriory defined for any smooth function ϕ(ξ). However it commutes with the group action
only on the subspace Sol(Nλ, C∞(Rm+2)). Indeed, g moves the cycle K̃ to a different cycle gK̃ homologous
to the initial one. To compare the integrals we use the Stokes formula for the form ωm(ϕ;Kλ(ξ, x)). The
integrals will be the same only if the form is closed. This happened only if ϕ(ξ) ∈ SolC∞(Nλ).

b). Let n = (0 : .. : 0 : 1 : 1) be the “North pole”in Sm. The variety Γn parametrizing the hyperplane
sections of the sphere Sm passing through the point n is a hyperplane given by equation ξm+1 +ξm+2 = 0.

It is sufficient to prove these formulas for one cycle K. Let πn : (x1, .., .xm+2) → (x1, .., .xm, xm+1 −
xm+2) be the projection along the line n. Set x̃ := (x1, .., .xm), v := xm+1 − xm+2. Assume that
f ∈ Φλ(Sm) vanishes near the line n. Then πn identifies f |Q+

m+2
with a function ϕ(x̃, v) := f(x̃, v,−(x2

1 +

... + x2
m)/v) on the hyperplane xm+2 = 0, which vanish at v ≤ ε, ε > 0. Let α+

m := πn(γ+
m). The

restriction of I+
λ f(ξ) to ξm+1 + ξm+2 = 0 can be written as

(−1)m
∫
α+
m

ϕ(x̃, v)
v

|ξ̃x̃+ v · (ξm+1 − ξm+2)/2|λ

Γ(λ+1
2 )

σm+1(x̃, v)

This and the following lemma shows that for K = Γn part b) reduces to the Plancherel theorem and
the inversion formula for the generalized Radon transform in the projective space (see s. 6.2-6.3). Set
ξ′ = (ξ1, ..., ξm+1).
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Lemma 7.6 . The restriction of the form ωm(ϕ; v) to Γn is equal to

ωm(ϕ; v)|Γn = (−1)m+1
(
v · (∂ξm+1 − ∂ξm+2)ϕ− ϕ · (∂ξm+1 − ∂ξm+2)v

)
σm+1(ξ′, dξ′)

Integrating by parts we get 2 · (−1)mϕ · (∂ξm+1 − ∂ξm+2)vσm+1(ξ′, dξ′)
4. An example: the Radon transform along the hyperplane sections of a sphere . The

generalized functions (52) has no poles on λ. One has

K+
−(2k+1)(ξ, x) =

(−1)kk!
(2k)!

· δ(2k)(< ξ, x >);

K−−2k(ξ, x) =
(−1)k(k − 1)!

(2k − 1)!
· δ(2k−1)(< ξ, x >)

K+
−2k(ξ, x) =

(−1)k2k
√
π

(2k − 1)!!
< ξ, x >−2k

K−−(2k+1)(ξ, x) =
(−1)k2k

√
π

(2k − 1)!!
< ξ, x >−2k−1

So we get the following integral transformation. For f ∈ Φ1−m(Sm) set

If(ξ) =
∫
β+
m

δ(x2
1 + ...+ x2

m+1 − x2
m+2)f(x)δ(< ξ, x >)σm+2(x, dx)

The function If(ξ) is zero outside Γ. Consider the following kernel:

K−(m−1)(ξ, x) := δ(m−2)(< ξ, x >) for odd m and < ξ, x >−(m−1) for even m

It defines an integral transformation acting on g ∈ Φ−1(Sm):

(J t)g(ξ) =
∫
β+
m

δ(x2
1 + ...+ x2

m+1 − x2
m+2)g(x)K−(m−1)(< ξ, x >)σm+2(x, dx)

Theorem 7.7 a) For any m-cycle K ∈ Γ one has

d(K)· < f, g >Sm= cm ·
∫
K

ωm

(
If ; J tg

)
where −cm = (−1)(m−1)/2

(2π)m−1 for odd m and (−1)m/2(m−1)!
(2π)m for even m.

b) In particular

d(K) · f(x) = cm ·
∫
K

ωm

(
If ;K−(m−1)(ξ, x)

)
(57)

So the inversion formula is local for odd m and nonlocal for even m.
Theorem (7.7) is a special case of theorem (7.5).
The inverse operator J provided by the kernel K−(m−1)(ξ, x) looks as follows:

(Jϕ)(x) :=
∫
K

∑
1≤i<j≤n

(−1)i+j−1
(
ϕ(ξ)(ξixj − ξjxi)δ(m−1)(< ξ, x >)−

(ξiϕ
′

ξj − ξjϕ
′

ξi)δ
(m−2)(< ξ, x >)

)
dξ1 ∧ ... ∧ d̂ξi ∧ ... ∧ d̂ξj ∧ ... ∧ dξn

for odd m and
(Jϕ)(x) :=

∫
K

∑
1≤i<j≤n

(−1)i+j−1
(
ϕ(ξ)(ξixj − ξjxi) < ξ, x >−m −
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(ξiϕξj − ξjϕξi) < ξ, x >−(m−1)
)
dξ1 ∧ ... ∧ d̂ξi ∧ ... ∧ d̂ξj ∧ ... ∧ dξn

for even m.
5. Admissible families of spheres. Restricting the integral operator I±λ to a family K of oriented

spheres we get an integral transformation

I±λ,K : Φλ(Sm) −→ Ψ±−λ−m(K)

A priory the restriction of the form ωm(ϕ; v) to a hypersurface K depends not only on the restriction
of the functions ϕ and v on K, but on their first derivatives in the normal direction to K. Therefore for
general K the right hand side of (57) can not be computed if know only I±λ,K(f). So it does not give an
inversion formula for the integral transformation I±λ,K .

Definition 7.8 A hypersurfaces K ⊂ Γ is called admissible if the restriction of the form ωm(ϕ; v) to K
depends only on the restrictions of smooth solutions ϕ ∈ SolC∞(Nλ), v ∈ SolC∞(Nλ) to K.

This means that there exists a bidifferential operator
ν : C∞(K)⊗2 −→ Am(K) such that for any ϕ, v as above ωm(ϕ; v)|K = ν(ϕ|K , v|K).

It is worth to compare this definition of admissibility with the one usually used in integral geometry,
see [G3].

Let C be a submanifold in Sm. Consider the family ΓC of oriented hyperplane sections of the sphere
Sm tangent to C. For example if C is a point then d(ΓC) = 1.

Lemma 7.9 For any C ⊂ Sm the hypersurface ΓC is admissible.

Proof. For C = n this follows from the lemma (7.6). Indeed, the vector field (∂ξm+1 − ∂ξm+2) is
tangent to the hyperplane Γn.

In general we proceed as follows. The form ωm(ϕ; v) is given by a bidifferential operator of first
order (see (54)), so its restriction to K is determined by the restriction of the functions ϕ and v to the
1-st infinitesimal neighborhood of K. Let η ∈ ΓC and t(η) be the tangency point of the hyperplane
< η, x >= 0 with C. Then the tangent space to ΓK at a point t(η) coincides with Γt(η).

6. Inversion of the integral transform related to an admissible family. The restriction of
the form ωm(I±λ (f);K∓λ (ξ, x)) to ΓC depends only I±λ,ΓCf . So one can expect the inversion formula

d(ΓC)f(x) = c(λ) ·
∫

ΓC

ωm

(
I±λ (f);K∓λ (ξ, x))

)
(58)

similar to (57). However the cycle ΓC lies in the closure Γ of Γ0, while the function I±λ (f) was well
defined only inside of Γ0. For the same reason the form ωm(I±λ (f);K∓λ (ξ, x)) is closed only inside of Γ0

(and outside of Γ ). So it is a priory unclear whether the formula makes sense and is it possible to use
the Stokes theorem.

To avoid this trouble we consider the integral transformation I±λ,ΓC only on the subspace C∞(Sm, C)
of the functions vanishing in a very small neighborhood of the subvariety C in Sm.

Let Ĉ ∈ Γ be the subvariety of spheres of radius zero with center at points of C. Let Ψ±λ (ΓC ; Ĉ) be
the subspace of Ψ±λ (ΓC) consisting of functions smooth near Ĉ. Then I±λ f is smooth in a neighborhood
of Ĉ. So we get an integral transformation

I±λ,ΓC : Φ−λ−m(Sm, C) −→ Ψ±λ (ΓC ; Ĉ)

Now we may apply the Stokes formula near Ĉ. Assuming this let us perturbate the cycle ΓC near
the boundary of Γ by moving it a little bit inside of Γ. Geometrically this means that we replace small
spheres tangent to C by close to them small spheres which are not tangent to C.

Remarks. 1. The cycle K becomes homologous to 0 in the sphere Sm+1 parametrizing all oriented
hyperplanes.
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2. One can deform smoothly the cycle K out of the domain Γ. However doing this we must cross all
the points of the boundary Γ1 of Γ. Therefore we can not use the Stokes formula to compare∫

K

ωm

(
I±λ (f);K∓λ (ξ, x))

)
and

∫
K′
ωm

(
I±λ (f);K∓λ (ξ, x))

)
where K is inside Γ0 and K ′ outside Γ. This is very natural: otherwise we would prove that they are
equal, and so equal to zero since the cycle K ′ is homologous to zero in the complement to Γ.

So we can reduce the investigation of the integral to the study of a similar integral over a cycle K
inside Γ0, which was done above. Therefore we come to the following conclusion:

Theorem 7.10 For an admissible family ΓC the operator J±λ provides an operator

J±λ,ΓC : Ψ±λ (ΓC , Ĉ) −→ Φ−λ−m(Sm, C)

such that
c(λ) · I±λ,ΓC ◦ J

±
λ,ΓC

= d(K) · Id

7. Geometry of the family of spheres. The group SO(m+ 1, 1) acts on the family of all spheres
in Sm. A remarkable fact is that a bigger symmetry group, SO(m + 1, 2), acts as a group of contact
transformations on the family of all spheres (including the points, which are spheres of zero radius!).

Namely, let
Xm+1 := {η2

1 + ...+ η2
m+1 − η2

m+2 − η2
m+3 = 0}/R∗+

be the m + 1-dimensional quadric of signature (m + 1, 2). Its affine part ηm+3 6= 0 is isomorphic to the
hyperboloid Γ0 = {ξ2

1 + ...+ ξ2
m+1− ξ2

m+2 = 1}. The complement to the affine part is the projectivization
of the cone {ξ2

1 + ... + ξ2
m+1 − ξ2

m+2 = 0}, i.e. it is a sphere {ξ2
1 + ... + ξ2

m+1 = 1}. The quadric Xm+1

parametrizes all oriented hyperplane sections of the sphere Sm. The hyperboloid Γ0 parametrizes all
oriented spheres of non zero radius.

Let A ⊂ Sm ×Xm+1 be the incidence subvariety. Consider the double bundle corresponding to this
family and its symplectization:

A N∗A(Sm ×Xm+1)

p1 ↙ ↘ p2 π1 ↙ ↘ π2

Sm Xm+1 T ∗Sm T ∗Xm+1

Let
Σ := π2(N∗A(Sm ×Xm+1)) ⊂ T ∗Xm+1

Then Σξ := T ∗ξXm+1 ∩ Σ is a nondegenerate quadratic cone in the cotangent bundle to ξ. This cone is
dual to the cone in the tangent space to the quadric at the point ξ given by intersection of the quadric
with the hyperplane in the projective space tangent to the quadric at ξ.

The hypersurface Σ is foliated on curves: bicharacteristics. This foliation is invariant under the action
of the multiplicative group R∗ on T ∗Xm+1.

Lemma 7.11 a) Projection along the bicharaceristics gives the R∗ equivariant fibration

πΣ :
(

Σ\ {zero section}
)
−→

(
T ∗Sm\ {zero section}

)
b) The projection of a bicharacteristic to Xm+1 consists of all spheres tangent to a given hyperplane

at a given point.
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So the manifold of all bicharacteristics is identified with the projectivization of the cotangent bunlde to
Sm.

Geometrically P (Σ\ {zero section}) is the set of all pairs

{ a contact element h at a point x ∈ Sm , a sphere tangent to h at x }

The group SO(m+1, 2) acts on Xm+1 and hence on Σ. Thanks to the lemma the group SO(m+1, 2)
acts as a group of homogeneous symplectomorphisms on T ∗Sm. It preserves the family of homogeneous
Lagrangian subvarieties given by the conormal bundles to spheres (including the spheres of zero radius).

8. The Hamilton-Jacoby method for description of admissible families of spheres. A
hypersurface K ′ ⊂ Xm+1 is characteristic if its conormal bundle in Xm+1 is contained in Σ, i.e. for any
nonsingular ξ ∈ K ′ the tangent plane TξK ′ is tangent to the “light cone” Σ∗ξ ⊂ TξXm+1.

Proposition 7.12 An irreducible hypersurface K ′ ⊂ Xm+1 is admissible if and only if it is characteristic.

Proof. We already proved in lemma (7.9) that if K ′ is characteristic then it is admissible. Let us
prove the converse statement. Since ωm(ϕ; v) is given by a bidifferential operator of order (1, 1) it is
enough to check that the restriction of the differential form ωm(ϕ; v) to any noncharacteristic hyperplane
does depend on the derivatives of ϕ and v in the direction transversal to this hyperplane. The group
SO(m + 1, 1) acts transitively on the variety of noncharacteristic hyperplanes in the tangent spaces
TξXm+1. So it is sufficient to check the statement above for the hyperplane ξm+2 = 0. One has

ωm(ϕ; v)|ξm+2=0 =
∑

1≤i≤m+1

(−1)i+m−1ξi · (v · ϕ
′

ξm+2
− v

′

ξm+2
· ϕ)dξ1 ∧ ...d̂ξi... ∧ dξm+1

The proposition follows.
The following lemma is well known

Lemma 7.13 Any algebraic irreducible homogeneous Lagrangian subvariety in T ∗X is isomorphis to the
conormal bundle to an algebraic irreducible subvariety Y ⊂ X

Theorem 7.14 Any admissible hypersurface in Γ is a piece of a hypersurface ΓC for a certain C ⊂ Sm.

Proof. We may assume that K ′ is irreducible. According to proposition (7.12) N∗K′Xm+1 is a
Lagrangian subvariety in Σ, so πΣ it projects it down to a Lagrangian subvariety in T ∗Sm, which by the
above lemma must have form N∗CS

m.

8 Holonomic kernels and their composition: the bicategory of
D-modules

1. Motivations. As we emphasized before the composition of natural linear maps defined by distribu-
tional kernels not always exists. However when it is defined we come to the problem of computation of
the composition. Many important problems of analysis can be considered as special cases of this one.
For instance in integral geometry both the integral transformation and its inverse should be treated as
natural linear maps between solution spaces of D-modules, so to invert an integral transformation we
should be able to compute the composition of natural linear maps.

Let us assume for a moment that Mi are excellent D-modules. Then usually the natural kernels
are distributions satisfying holonomic system of differential equations. This means that the image of
homomorphism

?̃M1 �M2 −→ D′(X1 ×X2) (59)

provided by the kernel
K12(x1, x2) ∈ HomD

(
?̃M1 �M2, D

′(X1 ×X2)
)
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is a holonomic D-module. Let us denote it by K12 and by ?̃M1�M2
α12−→ K12 the corresponding morphism

of D-modules. So (59) is a composition

?̃M1 �M2
α12−→ K12 ↪→ D′(X1 ×X2)

The idea to keep only the first arrow suggests the following definition

Definition 8.1 A holonomic kernel on X1 ×X2 is a collection (M1,M2,K12;α) where

M1 ∈ Db
coh(DX1), M2 ∈ Db

coh(DX2), K12 ∈ Db
hol(DX1×X2)

and
α ∈ RHomDX1×X2

(?M1 �M2,K12)

A holonomic kernel is a finer algebraic version of a holonomic distribution on X1 × X2 then the
D-module which this distribution satisfies.

Example. Suppose that Mi = DXi for i = 1, 2. Then ?̃DX1 = DX1 and DX1 × DX2 = DX1×X2 .
Morphisms of D-modules DX1×X2 −→ K are defined by their value on the generating section 1 and
correspond just to the sections of K12.

For instance, if X1 = X2 = A1 and K12 is the D-module of delta functions on the diagonal the
morphisms above correspond to sections f(x)δ(k)(x− y).

It seems that the notion of a bicategory is the appropriate language to discuss the holonomic kernels
and their composition.

2. Bicategories. A complete definition of (lax) bicategory see in [Be] or p.200 [KV]. In particular a
notion of bicategory C includes the following data:

a set ObC of objects;
for any 2 objects a set of 1-morphisms from A to B;
for any two 1-morphisms α1, α2 between A and B a set of 2-morphisms between α1 and α2.
For any 2 objects A1 and A2 of a bicategory there is a category Mor1(A1, A2) of 1-morphisms from

A1 to A2. The objects in this category are 1-morphisms from A1 to A2; the morphisms between given
two 1-morphisms from A1 to A2 are given by the 2-morphisms between these 1-morphisms.

The composition of 1-morphisms provides a bifunctor

Mor1(A1, A2)×Mor1(A2, A3) −→Mor1(A1, A3)

The archetypal example is the bicategory of all categories. Its objects are categories and for any two
categories A and B the category Mor1(A,B) is the category of functors from A to B.

3. A bicategory of D-modules. Below we work in the derived category. In particular all morphisms
are morphisms in the derived category.

The objects of the bicategory are pairs (X,M) where X is an algebraic variety over a field k (char
k = 0) and M∈ Db

coh(DX).
By definition 1-morphisms between the 2 objects (X,M) and (Y,N ) are holonomic kernels

?M�N α−→ K

It is the composition of 1-morphisms which makes the whole story relevant to integral geometry.
Roughly speaking it answers to the question “what system of differential equations satisfies the kernel of
the composition of 2 natural maps ?” and motivated by s. 5.7 above.

Let ∆2 : X1×X2×X3 ↪→ X1×X2×X2×X3 be the diagonal embedding of X2 and π2 : X1×X2×X3 →
X1 ×X3 be the projection. Consider the objects (Xi,Mi) where i = 1, 2, 3.

Definition 8.2 The composition of 1-morphisms

?M1 �M2
α12−→ K12 and ?M2 �M3

α23−→ K23
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is the 1-morphism
?M1 �M3

α13−→ K13

where
K13 = K12 ◦ K23 := π2∗∆

!
2

(
K12 �K23

)
and the morphism α13 is the composition of the morphisms id�G� id and α12 � α23:

?M1 �M3
id�G�id−→ π2∗∆

!
2

(
?M1 �M2 � ?M2 �M3

)
α12�α23−→ π2∗∆

!
2

(
K12 �K23

)
A 2-morphism between 1-morphisms

?M�N α1−→ K1 and ?M�N α2−→ K2

is a morphism ϕ12 : K1 −→ K2 making the following diagram commutative:

?M1 �M3

α1 ↙ ↘ α2

K1
ϕ12−→ K2

A 2-morphism between a holonomic kernel α′13 : ?M1 �M3 → K′13 and the composition K12 ◦ K23

of holonomic kernels α12 : ?M1 �M3 → K12 and α23 : ?M2 �M3 → K23 is provided by the following
commutative diagram

?M1 �M3
id�G�id−→ Rπ2∗∆!

2

(
?M1 �M2 � ?M2 �M3

)yα′13

yRπ2∗∆!
2(α12 � α23)

K′13 −→ Rπ2∗∆!
2

(
K12 �K23

)
The composition of 2-morphisms is defined in an obvious way.
The identity 1-morphism IdM. For any M∈ Db

coh(DX) there is a canonical morphism

IM : ?M�M−→ δ∆[dX ]

corresponding via (??) to the identity map Id ∈ HomDX (?M, ?M).
We will say that the 1-morphism α23 is weakly inverse to the 1-morphism α12 (see (??)) if there is a

2-morphism from the identity 1-morphism IdM to the composition of 1-morphisms α23 ◦α12. This means
that the following diagram is commutative:

?M1 �M1
id�G�id−→ Rπ2∗∆!

2

(
?M1 �M2 � ?M2 �M1

)yIM1

yRπ2∗∆!
2(α12 � α23)

δ∆
ϕ−→ Rπ2∗∆!

2

(
K12 �K23

)
Remark. These definitions make sense for any (not necessarily holonomic) Kij ∈ Db

coh(DX).
3. On composition of holonomic kernels. Recall that for M,N ∈ Db

coh(DX) one has

M
!
⊗ N := ∆!(M�N ) =M⊗O N [−dX ]

where ∆ : X ↪→ X ×X is the diagonal embedding.

Definition 8.3 Let K ∈ Db
coh(DX1×X2). Then it defines a functor

K̄ : Db
coh(DX1) −→ Db

coh(DX2) K̄(M) := p2∗(K
!
⊗ p!

1M)

36



This is motivated by the following proposition (compare with s. 8.2):

Proposition 8.4

RHomDX1×X2
(?M1 �M2,K12) = RHomDX2

(M2,K12(M1))

Proof. Let pi : X1 ×X2 −→ Xi be natural projections. We have

RHomD(?M1 �M2,K12) = RHomD(p!
1(?M1)[−dX2 ]⊗O p!

2(M2)[−dX1 ],K12) =

RHomD(p!
2(M2)[−dX1 ], ?p!

1 ? (M1)[dX2 ]⊗O K12) =

RHomD(p∗2(M2)[dX1 ],K12 ⊗O p!
1(M1)[−dX2 ]) =

RHomD(M2, p2∗(K12 ⊗O p!
1(M1)[−dX1 − dX2 ]) = RHomD(M2,K12(M1))

Proposition 8.5 There is natural isomorphism of functors:

¯K23 ◦ K12 = K̄23 ◦ K̄13

Proof.
Consider the following diagrams:

X1 ×X2 ×X3

π3 ↙ ↓ π2 ↘ π1

X1 ×X2 X1 ×X3 X2 ×X3

p1 ↙ ↘ p2 q1 ↙ ↘ q2

X1 X2 X3

and
X1 ×X3

r1 ↙ ↘ r2

X1 X3

Let ∆2 : X1 ×X2 ×X3 ↪→ X1 ×X2 ×X2 ×X3 is the diagonal imbedding of X2.

Lemma 8.6 Let K12 ∈ Db
coh(DX1×X2) and K23 ∈ Db

coh(DX2×X3). Then

K12 ◦ K23 = π2∗(π
!
3K12 ⊗O π!

1K23)

Proof. Follows immediately from π3 = τ12 ◦∆2 and π1 = τ23 ◦∆2. One has

K23(K12(M)) = q3∗(q
!
2p2∗(p

!
1M1

!
⊗ K12)

!
⊗ K23) =

q3∗(π1∗π
!
3(p!

1M1

!
⊗ K12)

!
⊗ K23) = q3∗(π1∗(π

!
1M1

!
⊗ π!

12K12)
!
⊗ K23) 1=

q3∗π1∗(π
!
1M1

!
⊗ π!

3K12

!
⊗ π!

1K23) = π3∗(π
!
1M1

!
⊗ π!

3K12

!
⊗ π!

1K23) =

r3∗π2∗(π
!
1M1

!
⊗ π!

3K12

!
⊗ π!

1K23) =

r3∗π13∗(π2!r
!
1M1

!
⊗ π!

3K12

!
⊗ π!

1K23) 2= r3∗(r
!
1M1

!
⊗ K12 ◦K23)
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Here (1) is by the base change for the diagram

X1 ×X2 ×X3

π3 ↙ ↘ π1

X1 ×X2 X2 ×X3

p2 ↘ ↙ q2

X2

and (2) is by projection formula f∗(A
!
⊗ f !B) = f∗A

!
⊗ B.

Lemma 8.7 The composition of 1-morphisms

(M1,M2,K12;α12) on X1 ×X2 and (M2,M3,K23;α23) on X2 ×X3

is a 1-morphisms
(M1,M3,K13;α13) on X1 ×X3

where K13 := K23 ◦ K12 and α23 is the composition:

M3 −→ K̄23(M2)
K̄23(τ12)−→ K̄23(K̄12(M1)) = K̄13(M1)

4. Natural linear maps provided by algebraic kernels. Let Mi ∈ Db
coh(DXi), i = 1, 2, and

K12 ∈ Db
coh(DX1×X2). Suppose we are given the following data:

1) an algebraic kernel

α12 ∈ RHomDX2
(M2,K12(M1)); K12 ∈ RHomDX1×X2

(K12,OX1×X2)

2) an element
γ ∈ RHomD(p2∗O(X1 ×X2),O(X2))

We will construct a linear map

RHomD(M1, C
∞(X1)) −→ RHomD(M2, C

∞(X2))

related to this data. Namely, by the functoriality

RHomD(M1, C
∞(X1)) −→ RHomD(p!

1M1, p
!
1C
∞(X1)) −→

RHomD(p!
1M1, C

∞(X1 ×X2)[dX2 ]) K12⊗−→

RHomD(K12 ⊗O p!
1M1, C

∞(X1 ×X2)[dX2 ]) −→

RHomD(p2∗(K12 ⊗O p!
1M1), p2∗C

∞(X1 ×X2)[dX1 ])
γ−→

RHomD(K12(M1), C∞(X2)[−dX2 ])

The morphism α12 provides the last arrow

RHomD(K12(M1), C∞(X2)[−dX2 ]) −→ RHomD(M2, C
∞(X2)[−dX2 ])

If
α12 ∈ RfHomD(M2,K12(M1)) ,K12 ∈ RkHomD(K12,O)

and
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γ ∈ RdX1−lHomD(p2∗C
∞(X1 ×X2), C∞(X2))

then we get a linear map

RjHomD(M1, C
∞(X1)) −→ Rj+k+l−dX1HomD(M2, C

∞(X2))

5. Algebraic version of the Radon transform of (holonomic) functions. Any 1-morphism
γ : A2 −→ A3 provides a functor

Fβ : Mor1(A1, A2) −→Mor1(A1, A3) α 7−→ β ◦ α

There is an object ? corresponding to the one-dimensional vector space considered as a D-module over a
point.

The category Mor1(?, (X,M)) looks as follows. Its objects are pairs: a holonomic complex of D-
modules L on X and a morphism α : M → L. The morphisms are provided by ϕ : L1 −→ L2 making
the corresponding diagram commutative. We will call it the category of D-modules under M on X.

Therefore the 1-morphisms (α,K) : (X,M) → (X,N ) provide functors from the category of D-
modules under M on X to the category of D-modules under N on Y .

6. Examples. Let me first discuss the analytic properties of the Radon transform in R2.

ϕ(x, y) 7−→ ϕ̂(ξ1, ξ2, s) :=
∫
ϕ(x, y)δ(ξ1x+ ξ2y − s)dxdy

the 1-form
κϕ̂(ξ1, ξ2) := ϕ̂′s(ξ1dξ2 − ξ2dξ1)

is closed on the subvariey ξ1x+ ξ2y− s = 0. Here (x, y) is a given point. Integral of this 1-form over any
cycle in (ξ1, ξ2) plane is zero.

Consider the line through the point (x, y) corresponding to ξ = (ξ1, ξ2). On a line minus a point ((x, y)
in our case),there is canonical multiplicatively invariant measure (dtt ). Let L(ξ) :=

∫
ϕ(x− ξ2t, y+ ξ1t)dtt

be the integral over this measure. Then∫ η

ξ

(κϕ̂)(ξ1, ξ2) = L(η)− L(ξ) (60)

where we integrate over any path connecting points ξ and η.
In particular in the affine picture

ϕ(x, y) 7−→
∫ ∞
∞

ϕ(x, ax+ b)dx, κϕ̂ = ϕ̂′bda

∫
ϕ̂′b(a, y − ax)da =

∫ ∞
−∞

ϕ(x, y)
dy

y
(61)

The 1-form κϕ̂ is exact on the image of functions vanishing at the point (x, y). For example

κ(I(xϕ)) = (I(xϕ))′bda = (Iϕ)′ada = d(Iϕ)

Formula (60) follows immediately from this.
Now let us turn to the D-module picture. Set

X1 = {(x, y)} = R2, X2 = {(a, b)} = R2, X3 = {(x′, y′)} = R2

and MXi = DXi . Notice that ?DXi �DXi+1 = DXi×Xi+1 [dXi ]. Set

δ(A) = δ(y − ax− b) and δ(A′) = δ(y′ − ax′ − b)

K12 := DX1×X2 · δ(A), K23 := DX2×X3 · δ(A′)

α12[−2] : 1X1×X2 7−→ δ(A), α12[−2] : 1X2×X3 7−→ δ(1)(A′)
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The D-module K13 has a more complicated structure which can be described as follows.

0 −→ OX1×X3 ⊕ δ∆13 −→ K13 −→ δV −→ 0 (62)

Here ∆13 ⊂ X1 ×X2 is the diagonal and V is the divisor of pairs of points (p, p′) with x = x′ (I.e. the
vertical line through p contain the point p′). Let

j : X1 ×X3\V ↪→ X1 ×X3 i : V ↪→ X1 ×X3 f : V \∆13 ↪→ V

Then (62) is the Bauer sum of the following two standard extensions:

0 −→ OX1×X3 −→ j∗j
∗OX1×X3 −→ δV −→ 0

and
i∗

(
0 −→ δ∆13 −→ f!f

∗OV −→ OV −→ 0
)

To see this consider the variety A := {p, l, p′} ⊂ X1 ×X2 ×X3 such that p, p′ ∈ l and its closure Ā in
X1 × X̄2 ×X3. Notice that Ā is the blow up of the diagonal ∆13 in X1 ×X3.

Then K13 = π2∗OA. One has π̄2∗OĀ = OX1×X3 ⊕ δ∆13 . Further, notice that Ā\A projects isomor-
phically to V . So one has

0 −→ OĀ −→ g∗OA −→ δV −→ 0

Taking direct image of this extension to X1 ×X3 we get (62)).

Proposition 8.8 The formula

δ(x− x′)δ(y − y′) 7−→ δ(y − ax− b)⊗ δ(1)(y′ − ax′ − b)dadb (63)

defines a homomorphism of D-modules δ∆ −→ K13 and hence a 2-morphism IdDX1
=> (α13,K13).

Proof. We have to show that applying to the right hand side of (63) any differential equations which
the left hand side satisfy, we will get exact 2-form in the de Rham complex with respect to (a, b) variables.
This follows from the formulas

(x− x′) · δ(A)⊗ δ(1)(A′)dadb = d
(
δ(A)⊗ δ(A′)(xda+ db)

)
(y − y′) · δ(A)⊗ δ(1)(A′)dadb = d

(
δ(A)⊗ δ(A′)a(xda+ db)

)
(∂x + ∂x′)δ(A)⊗ δ(1)(A′)dadb = d

(
δ(A)⊗ δ(1)(A′)ada

)
(∂y + ∂y′)δ(A)⊗ δ(1)(A′)dadb = d

(
δ(A)⊗ δ(1)(A)da

)
It is amazing to see the structure of the extension (62) from this point of view. Namely, δ(A) ⊗

δ(A′)dadb is a generator of K13, so (x− x′)δ(A)⊗ δ(A′)dadb is the generator of the submodule OX1×X3

and δ(A)⊗ δ(1)(A′)dadb generates the submodule δ∆13 .
The Radon transform over the lines in the space.

X1 = {(x, y, z)} = A3, X2 = {(a1, a2, b1, b2)} = A4, X3 = {(x′, y′, z′)} = A3

and

MXi = DXi for i = 1, 3; MX2 = DX2 · (
∂2

∂a1∂b2
− ∂2

∂a2∂b1
)

Notice that ?MX2 =MX2 [3].
Let A ⊂ X1 ×X2 be the correspondence {y − a1x− b1 = 0, z − a2x− b2 = 0} defining our family of

lines. Set

δ(A) = δ(y − a1x− b1) · δ(z − a2x− b2), δ(A′) = δ(y′ − a1x
′ − b1) · δ(z′ − a2x

′ − b2)

Then
K12 := DX1×X2 · δ(A) K23 := DX2×X3 · δ(A′)

α12 : 1X1×X2 7−→ δ(A)[−3] α23 : 1X2×X3 7−→ δ(A′)[−3]
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Proposition 8.9 The formula

δ(x− x′)δ(y − y′)δ(z − z′) 7−→ GM2

(
δ(A′), δ(A)

)
defines a homomorphism of D-modules δ∆ −→ K23 ◦K12 providing a 2-morphism IdDX1

=> (α23,K23) ◦
(α12,K12)

Here

GM2(g, f) =
1
2

(
(g′a1
· f − g · f ′a1

)da1 ∧ da2 ∧ db1 − (g′a2
· f − g · f ′a2

)da1 ∧ da2 ∧ db2

(g′b1 · f − g · f
′
b1)da1 ∧ db1 ∧ db2 − (g′b2 · f − g · f

′
b2)da2 ∧ db1 ∧ db2

)
Relation with the ”form κ” of [GGrS]. The Green class can be represented by another cocycle

κM := δ(A)⊗
( ∂

∂b1
δ(A′)da1 +

∂

∂b2
δ(A′)da2

)
∧ (xda1 + db1) ∧ (xda2 + db2)

Its great advantage is ”locality”: it is a cocycle in the de Rham complex with support in the incidence
subvariety A.

The expression ∂f
∂b1

da1 + ∂f
∂b2

da2 is the ”1-form κ”. It is a 1-form on the incidence subvariety A.
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