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THE DOUBLE LOGARITHM AND MANIN’S COMPLEX FOR
MODULAR CURVES

A. B. Goncharov

To Sasha Beilinson for his 40-th birthday

1. Introduction

Multiple polylogarithms are defined via power series expansion:

Lin1,...,nm
(x1, ..., xm) =

∑
0<k1<k2<...<km

xk1
1 xk2

2 ...xkm
m

kn1
1 kn2

2 ...knm
m

.(1)

Here w := n1 + ... + nm is called the weight and m the depth of the multiple
polylogarithm. These power series obviously generalize both Euler’s classical
polylogarithms Lin(x) (m=1), and Euler’s sums [E], often called multiple ζ-
numbers (x1 = ... = xm = 1) and studied in [Dr], [Z1-3], [G3-4], ...:

ζ(n1, ..., nm) :=
∑

0<k1<k2<...<km

1
kn1
1 kn2

2 ...knm

l

nm > 1.(2)

Multiple polylogarithms are periods of mixed Tate motives (s.12 of [G2], [G3]).
Let Γ1(N ;m) ⊂ GLm(Z) be the subgroup of the matrices whose bottom row

is congruent to (0, ..., 0, 1) modulo N and Vm the standard m-dimensional rep-
resentation of GLm(Z). In this note we begin to study a mysterious connection
between the multiple polylogarithms of depth m at N -th roots of unity and co-
homology of Γ1(N ;m) with coefficients in Sw−m(Vm) where m > 1. We will
work out in details the simplest case: m = 2, n1 = n2 = 1, p is prime. In s.4 we
touch the general situation and will return to it in [G1], see also [G4].

So we investigate the double logarithm function

Li1,1(x, y) =
∑

0<k1<k2

xk1yk2

k1k2
.(3)

The series are convergent for |x|, |y| ≤ 1, (x, y) �= (1, 1). They admit analytic
continuation to a multivalued analytic function.

We show that the double logarithm is a period of a mixed Tate motive
L̃i1,1(x, y) equipped with an additional data: 2-framing. Let p be a prime. If
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x and y are p-th roots of unity the corresponding mixed Tate motive is defined
over the scheme Sp := Spec Z[x]/(xp − 1).

The 2-framed mixed motives form a Q-vector space. Let L(p)2 be the space
generated by all 2-framed mixed Tate motives over the scheme Sp, and C(p)2⊗Q

the subspace genertated by the motives L̃i1,1(x, y), xp = yp = 1.
Let Cp be the group of cyclotomic units in Z[ζp]. We will construct a complex

δ : C(p)2 ⊗ Q → Λ2Cp ⊗ Q,(4)

which encodes the essential information about the double logarithm at p-th roots
of unity. One can show that Ker δ = K3(Z[ζp]) ⊗ Q.

Consider the classical triangulation of the hyperbolic plane by the images
of the geodesic triangle with vertices at 0, 1,∞ under the action of SL2(Z).
Projecting it down we get canonical triangulation of a modular curve X. By
definition Manin’s complex C•(X) is the chain complex of this triangulation.

We will construct a natural correspondence between the numbers Li1,1(ζa
p , ζb

p)
and the triangles on the modular curve X1(p). More precisely, let C•(X1(p))+
be the coinvariants of the complex conjugation acting on the complex points of
X1(p). We will construct a canonical isomorphism between (truncated) Manin’s
complex τ[2,1]C•(X1(p))+ and the quotient of complex (4) along Ker δ. This
implies that L(p)2/C(p)2 ⊗ Q is canonically isomorphic to H1(X1(p), Q)+.

One may compare this with the classical theory of cyclotomic units, where
{ units }/ { cyclotomic units } is a finite group of order h+

p (the plus part of the
class number of of the cyclotomic field). Notice that L1(x) = −log(1 − x), so
restricting x to the p-th roots of unity we get − log(1 − ζα

p ). Thus we consider
L(p)2 as the “weight 2” analog of the group of units Z[ζp]∗, and C(p)2 as an
analog of the subgroup of the cyclotomic units.

We suggest that the “higher cyclotomy theory” should study the multiple poly-
logarithm motives at roots of unity.

2. The double logarithm

1. Properties of the double logarithm function. (See [G1]-[G4] for general
properties of multiple polylogarithms). Consider the following iterated integral:

I1,1(a1, a2) :=
∫ 1

0

dt

t − a1
◦ dt

t − a2
:=

∫ ∫
0<t1<t2<1

dt1
t1 − a1

∧ dt2
t2 − a2

.

Key Lemma. The double logarithm can be written as an iterated integral :

Li1,1(x, y) =
∫

0<t1<t2<1

dt1
t1 − (xy)−1

dt2
t2 − y−1

= I1,1

(
(xy)−1, y−1

)
.
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Proof. Using dt
t−a =

∑∞
k=1

tk−1

ak we get

I1,1(a1, a2) =
∫ 1

0

(∫ t2

0

(
∞∑

k1=1

tk1−1
1

ak1−1
1

)dt1

)
· (

∞∑
k2=1

tk2−1
2

ak2−1
2

)dt2 =

∞∑
k1,k2=1

1
k1

∫ 1

0

tk1+k2−1
2

ak1
1 ak2

2

dt2 =
∞∑

k1,k2=1

(a2/a1)k1 · (1/a2)k1+k2

k1(k1 + k2)
.

This lemma provides an analytic continuation of the double logarithm.
Symmetry relations. The double logarithm enjoys the following properties:

log(1 − x) log(1 − y) = Li1,1(x, y) + Li1,1(y, x) + Li2(xy)(5)

log(1 − x−1) log(1 − y−1) = I1,1(x, y) + I1,1(y, x)

(Notice that I1,1(x, y) + I1,1(y, x) = Li1,1( y
x , 1

y ) + Li1,1(x
y , 1

x )).
Indeed, multiplying the power series for log(1 − x) and log(1 − y) we get

(
∑

0<k1<k2

+
∑

0<k1=k2

+
∑

0<k2<k1

)
xk1yk2

k1k2

which is just the right hand side of the first identity.
The second follows from the product formula for iterated integrals:∫ 1

0

dt

t − x
·
∫ 1

0

dt

t − y
=

∫ 1

0

dt

t − x
◦ dt

t − y
+

∫ 1

0

dt

t − y
◦ dt

t − x
.

The distribution relations. For any n|N and |x|, |y| ≤ 1 one has

Li1,1(x1, x2) =
∑

yn
i
=xi

Li1,1(y1, y2), Li2(x) = n ·
∑

yn=x

Li2(y).(6)

This is easy to show using the power series expansion.
The differential equation. One has

dLi1,1(x, y) = log(1 − xy)d log
(1 − y)x
(1 − x)

+ log(1 − y)d log(1 − x).

Indeed,

dLi1,1(x, y) =
∑

0<k1<k2

(
xk1

k1
yk2−1dy + xk1−1 yk2

k2
dx) =

∑
0<k1

xk1

k1

yk1

1 − y
dy +

∑
0<k2

(xk2−1 − 1)
x − 1

yk2

k2
dx =

log(1 − xy)d log(1 − y) − log(1 − xy)
dx

x(x − 1)
+ log(1 − y)d log(1 − x).

Using dx/x(x − 1) = (1/(x − 1) − 1/x)dx we get the formula.
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Relation with the dilogaritm. It is easy to check by differentiation that

Li1,1(x, y) = Li2(
xy − y

1 − y
) − Li2(

y

y − 1
) − Li2(xy).

Substituting this to (5) we get the famous five term relation for the dilogarithm:

Li2(
xy − y

1 − y
) + Li2(

xy − x

1 − x
) − Li2(

y

y − 1
) − Li2(

x

x − 1
) − Li2(xy) =

log(1 − x) · log(1 − y).

2. A variation of mixed Hodge structures related to the double loga-
rithm. Let

A1,1(x, y) :=




1 0 0 0
log(1 − xy) 2πi 0 0
log(1 − y) 0 2πi 0
Li1,1(x, y) 2πi · log (1−y)x

(1−x) 2πi · log x (2πi)2


 .

The matrix A1,1(x, y) defines a variation of mixed Hodge structures over C2\{x =
0, x = 1, y = 1, xy = 1} as follows.

Let Ci be the i−th column of the matrix A1,1(x, y), i = 0, ..., 3. For given
(x, y) let H1,1(x, y) :=< C0, ..., C3 >Q be the Q-linear combinations of columnes
of the matrix A1,1(x, y). The monodromy properties of the function Li1,1(x, y)
and logarithms imply that Q-vector spaces H1,1(x, y) form a local system, called
H1,1. It has a weight filtration defined as follows:

W−2kH1,1(x, y) :=< Ck, ..., C3 >, W−2k+1 = W−2k.

Let e0, ..., e3 be the standard basis in C4 (the space of columnes). Then
H1,1(x, y) ⊗Q C = C4. We define the Hodge filtration setting F−kH1,1(x, y) =
< e0, ..., ek >C.

Lemma 2.1. H1,1 is a variation of mixed Hodge structures.

Proof. The Griffith transversality condition is just equivalent to the differential
equation for the double logarithm function.

3. A 2-framed mixed Tate motive Ĩ1,1(a1, a2). Changing variables ui :=
ti − ai we get

I1,1(a1, a2) :=
∫ ∫

∆(a1,a2)

du1

u1
∧ du2

u2
,

where for appropriate real (a1, a2) one has

∆(a1, a2) := {(u1, u2) ⊂ R2| 0 ≤ u1 + a1 ≤ u2 + a2 ≤ 1}.
This suggests the following interpretation of the double logarithms as a period
of a mixed Tate motive (More general motives were studied in [BMSV]).

Let (u0 : u1 : u2) be homogeneous coordinates in P2, Li = {ui = 0} the
coordinate lines and L := L0 ∪ L1 ∪ L2 the coordinate triangle.
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Set M := M0 ∪ M1 ∪ M2 where

M1 = {u1 + a1 = 0}, M2 = {u2 + a2 = 0}, M0 = {u1 + a1 = u2 + a2}

L

L

ML

M 2

M1 0

2

0

1

Let ∆M be an oriented 2-chain in CP2\L, which is the homeomorphic image
of the triangle (t1, t2)|t1 ≥ 0, t2 ≥ 0, t1 + t2 ≤ 1, with sides on lines Mi. Its
vertices coinside with the ones of M . Then ∆M represents a generator of the
group H2(CP2, M ; Z). The formula I1,1(a1, a2) =

∫
∆M

ωL provides an analytic
continuation of the double logarithm.

Consider the mixed Hodge structure

HL,M := H2(CP2\L, M).

The only non zero Hodge numbers are h0,0, h1,1, h2,2, and in general h0,0 =
1, h1,1 = 2, h2,2 = 1.

The natural map HL,M → H2(CP2\L) provides an isomorphism
grW

4 HL,M −→ H2(CP2\L) = Q(−2), and similarly we get an isomorphism
Q(0) = H2(CP2, M) −→ W0HL,M . Thus we get distinguished elements

ωL ∈ HomM(Q(−2), grW
4 HL,M ), [∆M ] ∈ (HomM(Q(0), W0HL,M ))∗

and
∫
∆M

ωL is a period of the mixed Hodge structure HL,M .

4. The Tannakian formalism for mixed Tate categories: a review. (see
also [BMS], [BGSV]). Let M be an abelian tensor Q-category with an invertible
object Q(1). Set Q(n) := Q(1)n. We will say that M is a mixed Tate category
if the objects Q(n) are mutually nonisomorphic, any simple object is isomorphic
to one of them and Ext1M(Q(0), Q(n)) = 0 if n ≤ 0.

Any object M of a mixed Tate category has a canonical weight filtration W•M
such that grW

2kM = ⊕Q(−k), grW
2k+1M = 0. The functor

ω : M −→ V ect•, M �−→ ⊕k HomM(Q(−k), grW
2kM)

to the category of graded Q-vector spaces is a fiber functor. Let

L(M)• := Der(ω) := {F ∈ Endω|FX⊗Y = FX ⊗ idY + idY ⊗ FY }
be the space of its derivations. It is a graded pro-Lie algebra over Q.
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Let ω̃ be the fiber functor to the category of finite dimensional Q-vector spaces
obtained from ω by forgetting the grading. Then Aut⊗ω̃ is a pro-algebraic group
scheme over Q. It is a semidirect product of Gm and a pro-unipotent group
scheme G. The pro-Lie algebra L(M) is the Lie algebra of the group scheme G.
The action of Gm provides a grading on L(M).

According to the Tannakian formalism the category M is canonically equiv-
alent to the category of finite dinensional Q-modules over the group scheme
Aut⊗ω̃. This category is naturally equivalent to the category of graded finite
dinensional modules over the group scheme G. Since G is pro-unipotent, the last
category is equivalent to the category graded finite dinensional modules over the
graded pro-Lie algebra L(M)•.

Let U(M)• := End(ω) be the space of all endomorphisms of the fiber functor
ω. It is a Hopf algebra which is isomorphic to the universal enveloping algebra
of the Lie algebra L(M)•.

The dual Hopf algebra (U(M)•)∗ can be identified with the Hopf algebra
Q[G] of regular functions on G. The action of Gm on G provides a grading on
it. Below we give a more concrete way to think about this Hopf algebra.

Let n ≥ 0. Say that M is an n-framed object of M if it is supplied with a
nonzero morphisms vn : Q(−n) −→ grW

2nM and f0 : grW
0 M −→ Q(0).

Consider the finest equivalence relation on the set of all n-framed objects for
which M1 ∼ M2 if there is a map M1 → M2 respecting the frames. For example
any n-framed object is equivalent to a one M with W−2M = 0, W2nM = M .
Let An be the set of equivalence classes. It is an abelian group:

[M, vn, f0] + [M ′, v′n, f ′
0] = [M ⊕ M ′, (vn, v′n), f0 + f ′

0]

−[M, vn, f0] := [M,−vn, f0] = [M, vn,−f0]. The neutral element is Q(0) ⊕
Q(−n) with the obvious frame. The composition f0 ◦ v0 : Q(0) → Q(0) provides
an isomorphism A0 = Q.

The tensor product induces the commutative multiplication µ : Ak ⊗ A� →
Ak+�. Let us define the comultiplication

∆ =
⊕

0≤k≤n

∆k,n−k : An →
⊕

0≤k≤n

Ak ⊗An−k.

Choose a basis p1, ..., pm of HomM(Q(−k), grW
2kM) and the dual basis

p′1, ..., p
′
m of (HomM(grW

2kM, Q(−k)). Then

∆k,n−k[M, vn, f0] :=
m∑

i=1

[M, vn, p′i](n − k) ⊗ [M, pi, f0].

In particular ∆0,n = id ⊗ 1 and ∆n,0 = 1 ⊗ id. Then A(M)• := ⊕A(M)n is a
graded Hopf algebra with the commutative multiplication µ and the comultipli-
cation ∆.

Theorem 2.2. The Hopf algebra A• := ⊕∞
k=0Ak is canonically isomorphic to

the dual of the Hopf algebra U(M)•.
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A canonical morphism i : A• → U(M)∗• is constructed as follows. Let F ∈
End(ω)n and [M, vn, f0] ∈ An. Then < i([M, vn, f0]), F >:=< f0, F (vn) >.

Set ∆′(X) := ∆(X) − (X ⊗ 1 + 1 ⊗ X). ∆′ provides the quotient L(M)• :=
A(M)•/(A(M)>0)2 with the structure of a Lie coalgebra with cobracket δ.

An example. A Q-Hodge-Tate structure is a mixed Q-Hodge structure with
hp,q = 0 if p �= q. Let HTQ be the category of Q-Hodge-Tate structures. Set
H• := A•(HTQ). Then

H1 = Ext1Q−MHS(Q(0), Q(1)) =
C

2πiQ
= C∗

Q.

Under the isomorphism the extension provided by the mixed Hodge structure

given by the columns of the matrix
(

1 0
log(z) 2πi

)
corresponds to z ∈ C∗.

One has

∆′ : H2 −→ H1 ⊗H1 = C∗ ⊗Q C∗, δ : H2/(H1)2 −→ Λ2
QC∗.

Below a tilda over Li always means that we are dealing with the framed
Hodge-Tate structure related to a multiple polylogarithm. See for the general
construction s. 12 of [G2] or [G3].

Proposition 2.3.

∆′L̃i1,1(x, y) = (1 − xy) ⊗ (1 − y)x
(1 − x)

+ (1 − y) ⊗ (1 − x) ∈ C∗ ⊗Q C∗.(7)

Proof. Follows from the description of the mixed Hodge structure given in §2.2.

3. The double logarithm at N-th roots of unity and Manin’s
complex for X1(N)

1. Symmetry relations. In this section we study the 2-framed mixed Hodge
structures related to the double logarithm at roots of unity.

Theorem 3.1. Let a, b be N -th roots of unity. Then modulo N -torsion one has
the following relations between the motivic double logarithms :

The symmetry relations :
a) In the depth one :

L̃i1(a−1) = L̃i1(a), L̃i2(a−1) + L̃i2(a) = 0.(8)

b) In the depth two :

L̃i1,1(a, b) + L̃i1,1(b, a) = L̃i1(a)L̃i1(b) − L̃i2(ab),(9)

L̃i1,1(a, b) + L̃i1,1(a−1, ab) = L̃i1(ab)L̃i1(b).(10)
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The distribution relations : For any n|N one has

L̃i1,1(a1, a2) =
∑

bn
i
=ai

L̃i1,1(b1, b2), L̃i2(a) = n ·
∑
bn=a

L̃i2(b).(11)

Let ∆12 be the group of order 12 given by generators σ1, σ2 subject to the
relations σ2

1 = σ2
2 = 1, (σ1σ2)6 = 1. This group acts on the space of the depth

two, weight two polylogarithms as follows:

σ1 : L̃i1,1(a, b) �−→ −L̃i1,1(a−1, ab) + L̃i1(ab)L̃i1(b),(12)

σ2 : L̃i1,1(a, b) �−→ −L̃i1,1(b, a) + L̃i1(a)L̃i1(b) − L̃i2(ab).(13)

The action on the depth one polylogarithms is trivial. The relations (9) are just
the symmetry under the action of ∆12. (Compare this with the Bass theorem
on cyclotomic units.)

Remark. Consider slightly modified functions

L′
1,1(x, y) := Li1,1(x, y) − 1

2
log(1 − xy) · log

(1 − y)x
1 − x

− 1
2

log(1 − x) · log(1 − y)

L′
2(x) := Li2(x) − 1

2
log(1 − x) · log x.

Then we rid off products of logarithms from the symmetry relations (9)

L̃′
1,1(x, y) + L̃′

1,1(y, x) + L̃′
2(xy) = 0, L̃′

1,1(x, y) + L̃′
1,1(x

−1, xy) = 0.

Definition 3.2. The subgroup C(N)2 ⊂ H2/(H1)2 is generated by the 2-framed
Hodge-Tate structures L̃i1,1(a, b), aN = bN = 1.

Thanks to (9), (10) we know that L̃i2(a) ∈ C(N)2. Let C(N)(1)2 ⊂ C(N)2 be
the subgroup generated by the motivic dilogarithms at N -th roots of unity, i.e.
by L̃i2(a), aN = 1. Set C̄(N)2 := C(N)2/C(N)(1)2

Definition 3.3. Let a, b, c be N -th roots of unity such that abc = 1. Denote by
{a, b, c} be the projection of L̃i1,1(a, b) to C̄(N)2.

The symmetry under the action of the group ∆12 now looks neater:

{a, b, c} = −{b, a, c}, {a, b, c} = −{a, c, b}, {a, b, c} = {a−1, b−1, c−1}.
(14)

In particular ∆12 = S3 × Z/2Z.
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2. The double logarithm complex. Let C∗
N be the subgroup of C∗ generated

by the elements 1 − ζα
N where ζN is a primitive root of unity.

Lemma 3.4. a) Modulo N -torsion one has

C(N)(1)2 ⊂ Ker δ, δ(C(N)2) ⊂ Λ2C∗
N .Z[

1
N

].

b) C(N)(1)2 = Kind
3 (Z[ζN ]) modulo torsion.

c) If N = p is a prime then modulo p-torsion δ(C(p)2) ⊂ Λ2Cp.

Proof. a) Since ζN is an N -torsion element in C∗ we get

δL̃2(ζα
N ) = L̃1(ζα

N ) ∧ ζα
N = 0 modulo N -torsion.

Using formula (7) for ∆′L̃i1,1(x, y) when x, y are N -th roots of unity we get
modulo N -torsion

δ{a, b, c} = −(1 − a) ∧ (1 − b) − (1 − b) ∧ (1 − c) − (1 − c) ∧ (1 − a)

=
1 − a

1 − c
∧ 1 − b

1 − c
.

(15)

b) This is a reformulation of the well known result about the cyclotomic
elements in K3(Z[ζN ]).

c) Follows from (15) and the fact that 1−ζα
p

1−ζβ
p

is a unit when p is a prime.

So we get a complex defined modulo N -torsion

δ : C(N)2 −→ Λ2C∗
NQ.(16)

Below we will compare it with Manin’s complex for the modular curve X1(N).

3. Modular symbols and Manin’s complex. Modular symbols. Let x, y
be two points on P 1(Q) viewed as the boundary points of the hyperbolic plane
H. Let γx,y be the geodesic connecting x and y. Let Γ ⊂ PSL2(Z) be a
subgroup of finite index. Set YΓ := Γ\H. Let H∗ := H∗ ∪ P1(Q). Let XΓ =
Γ\H∗ be the compactification of YΓ and PΓ := XΓ\YΓ = Γ\P 1(Q) the set of
cusps. The projection of the geodesic γx,y onto XΓ defines an element {x, y} ∈
H1(XΓ, PΓ; Z), called a modular symbol. Let X1(N)C = Γ1(N)\H∗ be the
modular curve of level N . X1(N)C is the set of complex points of an algebraic
curve X1(N) which can be defined over Q. So the complex conjugation acts on
X1(N)(C). The projection Γ1(N)\H∗ −→ X1(N)(C) transforms the involution
z → −z̄ of the hyperbolic plane to the complex conjugation on X1(N)(C).

Manin’s complex. Let γ be the vertical geodesic from 0 to i∞ on the hyper-
bolic plane. For any g ∈ PSL2(Z) we get a geodesic gγ. Its projection onto
X1(N) depends only on the coset Γ1(N) · g. Set

EN :=
{< α, β >∈ (Z/NZ)2 | g.c.d. (α, β, N) = 1}

< α, β > ∼ < −α,−β >
.
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The group PSL2(Z) acts from the right on the rows < α, β > where α, β ∈
(Z/NZ)2/ ± 1. The set EN is the orbit of < 0, 1 >, so EN = Γ1(N)\PSL2(Z).
Thus for any < α, β >∈ EN we get a geodesic ξ(α, β) on X1(N).

Set

σ =
(

0 −1
1 0

)
τ =

(
0 −1
1 −1

)
.

Let < γ, τγ, τ2γ > be the geodesic triangle with the vertices i∞, 0, 1.
Consider the following cell decomposition of X1(N):
0-cells: cusps on X1(N).
1-cells: geodesics g · γ on X1(N), g ∈ PSL2(Z).
2-cells: the projections onto X1(N) of the triangles g· < γ, τγ, τ2γ >, where

g ∈ PSL2(Z).
Set Ci(X1(N)) := Z[i − cells], CQ

i (X1(N)) := Ci(X1(N)) ⊗ Q.
We get the chain complex of this cell decomposition of X1(N):

C2(X1(N)) ∂−→ C1(X1(N)) ∂−→ C0(X1(N)).

(α,β)

(α,β,γ)

(β,γ)(γ,α)

corresponding to 

g in PSL(2,Z)

in E<α,β>

γ

τγ

τ γ2

0 1

N

X (N) 
1

Let Ci(X1(N))+ be the space of coinvariants of the complex conjugation.

4. Main construction. Let α, β, γ ∈ Z/NZ and α + β + γ = 0. Choose
g ∈ PGL2(Z) such that Γ1(N) · g =< α, β >. Denote by ξ(α, β, γ) the oriented
triangle g· < γ, τγ, τ2γ >. Its sides are the geodesics ξ(α, β), ξ(β, γ), ξ(γ, α).
Let (α, β, γ) be the generator of the group C2(X1(N))+ corresponding to this
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triangle. Denote by (α, β) the element of the group C1(X1(N))+ corresponding
to the geodesic ξ(α, β). Then

∂(α, β, γ) = (α, β) + (β, γ) + (γ, α).(17)

Theorem 3.5. a) Let N > 1 and ζN := e2πi/N . Then modulo N -torsion there
is a morphism of complexes

C2(X1(N))+
∂−→ C1(X1(N))+

g2 ↓ g1 ↓

C(N)2
δ−→ Λ2C∗

N

given on the generators by

g1 : (α, β, γ) �−→ −{ζα
N , ζβ

N , ζγ
N}, α + β + γ = 0

g2 : (α, β) �−→ (1 − ζα
N ) ∧ (1 − ζβ

N ), (0, β) �−→ 0.

b) It is surjective if N = pa where p is a prime.

Proof. The map g1 is obviously surjective for any N .

Proposition 3.6. g2 is a well defined homomorphism.

Proof of the proposition (3.6). The group S3 × Z/2Z acts on the generators
(α, β, γ) of the group C2(X1(N))+. Namely, σ ∈ S3 acts by a permutation and
the nontrivial element of Z/2Z by (α, β, γ) �−→ (−α,−β,−γ).

Lemma 3.7. One has

(α, β, γ) = (−α,−β,−γ), (α, β, γ) = (γ, α, β), (α, β, γ) = −(β, α, γ).

Proof. The first equality follows from the definition of EN . The second is true
since the triangles < g · γ, gτ · γ, gτ2 · γ > and < gτ · γ, gτ2 · γ, g · γ > coinside.
The third is valid thanks to formula (19) in the following lemma

Lemma 3.8. a) The complex conjugation acts on the geodesic ξ(α, β) by

ξ(α, β) �−→ ξ(−α, β, )(18)

and on the generators of the group C2(X1(N)) by

(α, β, γ) �−→ −(β, α, γ).(19)

b) One has (α, β) = −(β,−α).
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Proof. a) Let g =
(

a b
c d

)
. Then g · {i∞, 0} = {a

c , b
d} = ξ(c, d). The involution

z → −z̄ sends the modular symbol {a
c , b

d} to {−a
c ,− b

d}. On the other hand

{−a

c
,− b

d
} =

(
a −b
−c d

)
{i∞, 0} = ξ(−c, d),

and we get (18). Notice gτ =
(

b −a − b
d −c − d

)
, gτ2 =

(−a − b b
−c − d d

)
. So the

element g =
(

a b
c d

)
transforms the triangle < γ, τγ, τ2γ > to the geodesic

triangle < ξ(c, d), ξ(d,−c − d), ξ(−c − d, c) >. Under the complex conjugation
it goes to the geodesic triangle < ξ(−c, d), ξ(−d,−c − d), ξ(c + d, c) >, which
coinsides with the triangle < ξ(d, c), ξ(−c−d, d), ξ(c,−c−d) > but has a different
orientation.

b) Indeed, σγ is the geodesic from i∞ to 0 and Γ1(N) · gσ = (β,−α). The
lemma is proved.

The stabilizer of the triangle < γ, τγ, τ2γ > in the group PGL2(Z) is the
group S3. So the only relations between the generators (α, β, γ) are those pro-
vided by the action of the group S3×Z/2Z. Under the map g2 they go precisely
to the symmetry relations (14). So g2 is well defined. Proposition (3.6) is proved.

All relations between the generators (α, β) of C1(X1(p))+ are given by (18)
and lemma (3.8b). So g1 is well defined.

Looking at the diagram

(α, β, γ) ∂−→ (α, β) + (β, γ) + (γ, α)

g2 ↓ g1 ↓

−{ζα
N , ζβ

N , ζγ
N} δ−→ (1 − ζα

N ) ∧ (1 − ζβ
N ) + (1 − ζβ

N ) ∧ (1 − ζγ
N )

+(1 − ζγ
N ) ∧ (1 − ζα

N )

and comparing formula (15) for δ with formula (17) for ∂ we see the commu-
tativity for αβγ �= 0. Notice that (0, β,−β) = 0 and (1 − ζβ

N ) ∧ (1 − ζ−β
N ) = 0

modulo N -torsion. So the diagram is commutative. Theorem (3.5a) is proved.

5. The case when the level N = p is a prime. We will construct a sub-
complex C̃•(X1(p)) ⊂ C•(X1(p)). For this we need to recall some facts.

The boundary of Manin’s symbols. The cusps of X1(N) are parametrized by

the orbits of the unipotent group Γ∞ :=
(

1 ∗
0 1

)
on the set EN . If N = p

is a prime they are the orbits of the elements < 0, β > and < α, 0 > where
α �= 0, β �= 0. We will denote these orbits by [0, β] and [α, 0].

The boundary of Manin’s symbols looks as follows:

∂(α, β) = [0, β] − [0, α] if α �= 0, β �= 0;
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∂(0, β) = −∂(β, 0) = [0, β] − [β, 0] if β �= 0;

From this and lemma 3.8 we see that the complex conjugation acts as the identity
map on the cusps of X1(p).

There are just two cusps on X0(p) called the ∞ and 0 cusps. They are the
images of i∞ and 0 under the projection H∗ → X0(p). The covering X1(p) →
X0(p) is unramified of degree (p − 1)/2. The cusps on X1(p) lying over the ∞
cusp on X0(p) are called the ∞-cusps. They are canonically identified with the
set of p-th roots of unity different from 1 considered modulo inversion (i.e. ζ
and ζ−1 correspond to the same cusp). If we think about the cusps as of the
isomorphism classes of pairs,

{a generalized elliptic curve of Deligne-Rappoport, a point of order p on it
such that the subgroup scheme it generates meets every irreducible component of
each geometrical fiber},
then the ∞-cusps correspond to the standard Neron polygon with one side and
the choice of a generator of its unique subgroup of order p. In our parametriza-
tion this is the cusps [0, β]. By definition C̃0(X1(p)) is the free abelian group
generated by the ∞-cusps. So there is a canonical isomorphism modulo p-torsion

g0 : C̃0(X1(p)) −→ C∗
p , [0, β] �−→ 1 − ζβ

p

group C̃1(X1(p)) is generated by the geodesics ξ(α, β) connecting the ∞-cusps
i.e. αβ �= 0. The group C̃2(X1(p)) is generated by the geodesic triangles (α, β, γ)
such that αβγ �= 0. These groups form a subcomplex C̃•(X1(p)) of Manin’s
complex. Its + part is canonically quasiisomorphic to the + part of Manin’s
complex. Indeed, each 0-cusp is a boundary of just one edge in Manin’s complex
connecting it with an ∞-cusp. ([0, β] is connected with [β, 0]). Notice that
(0, β,−β) = 0 in C2(X1(p))+.

over ∞ with the p-th roots of unity modulo
Consider a homomorphism

δ′ : Λ2C∗
p −→ C∗

p , (1 − ζα
p ) ∧ (1 − ζβ

p ) �−→ 1 − ζβ
p

1 − ζα
p

.

The kernel of this map modulo p-torsion is the group Λ2Cp.

Theorem 3.9. a) There is a canonical isomorphism of complexes modulo p-
torsion

C̃2(X1(p))+ −→ C̃1(X1(p))+ −→ C̃0(X1(p))+

g2 ↓ g1 ↓ g0 ↓

C̄(p)2
δ−→ Λ2C∗

p
δ′
−→ C∗

p

b) It transmits the action of the Galois group of the covering X1(p) → X0(p)
on the complex C̃•(X1(p)) to the action of Gal(Q(ζp)/Q) on the bottom complex.
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Remark. In the definition of Manin’s complex for X1(N) we have already choosen
the generator e2πi/N of the group of N -th roots of unity.
Proof. The only relations modulo p-torsion in C∗

p are 1− ζα
p = 1− ζ−α

p . Thanks
to this, lemma (3.8b) and formula (18), the map g1 is an isomorphism.

The complex conjugation acts on H2(X1(p), Q) with the eigenvalue −1. This
means that the restriction of ∂ to C2(X1(p))+ is injective. Since the diagram is
commutative and g1 is an isomorphism, we conclude that g2 is injective. So it
is an isomorphism by theorem (3.5). The theorem is proved.

6. Corollaries. Set Z1(X1(p))+ := Ker
(
C1(X1(p))+

∂−→ C0(X1(p))+
)
.

Corollary 3.10. a) There is an isomorphism of complexes modulo p-torsion

C2(X1(p))+
∂−→ Z1(X1(p))+

g2 ↓ ↓ g1

C̄(p)2
δ−→ Λ2Cp

(20)

b) dim C̄(p)2 = (p−1)(p−5)
12 .

Proof. a) follows from theorem (3.9). To check b) notice that rkΛ2Cp =
(p−3)(p−5)

8 and dimS0
2(Γ1(p)) = 1 + p2−1

24 − p−1
2 .

Example. p = 13, so dimC̄(13)2 = 8, dimS0
2Γ1(13) = 2.

Corollary 3.11.

Ker
(
C2(p) δ−→ Λ2Cp

)
⊗ Q = K3(Z[ζp]) ⊗ Q,

Coker
(
C2(p) δ−→ Λ2Cp

)
= H1(X1(p), Z)+ modulo p-torsion.(21)

The analog of the Bass theorem on the cyclotomic units is

Theorem 3.12. All relations between the motivic depth two polylogarithms at
p-th roots of unity are given by the symmetry relations (8) and (9).

The corollary and the theorem follow immediately from theorem (3.9).
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7. Motivic picture. Let MT (S) be the abelian category of mixed Tate motives
over one dimensional arithmetic scheme S. The key property is the fundamental
Beilinson formula

Ext1MT (S)(Q(0), Q(n)) = K2n−1(S) ⊗ Q, n ≥ 1(22)

and higher Ext’s vanish. The corresponding triangulated category was recentely
defined by Voevodsky, however the key formula (??) is not available yet. So we
can define an object of MT (S), but can not afford to use the whole formalism.
In this section we will assume the formalism, so the results are conditional.

We will say that an equivalence class of n-framed mixed Tate motives is
defined over S if one can find a representative in the equivalence class defined
over S.

Theorem 3.13. Let us assume (??). Suppose that ap
1 = ap

2 = 1 and p is a prime
number. Then there exist M ∈ Z such that the equivalence class of the 2-framed
mixed Tate motive M · L̃i1,1(a1, a2) is defined over Sp := Spec Z[ζp].

However, we do not get all 2-framed mixed Tate motives over Sp this way!
Namely, let L(p)• be the Lie coalgebra of the category of mixed Tate mo-
tives over Sp. Then it follows from the Tannakian formalism (see s. 2.4) that
Hi

(n)(L(p)•) = ExtiMT (Sp)(Q(0), Q(n)) where Hi
(n) is the degree n part of Hi.

So by (??) one has L(p)1 = Cp ⊗ Q,

Coker
(
L(p)2 → Λ2L(p)1

)
= Ext2MT (Sp)(Q(0), Q(2))

= K2(Z[ζp]) ⊗ Q = 0,
(23)

Ker
(
L(p)2 → Λ2L(p)1

)
= Ext1MT (Sp)(Q(0), Q(2)) = K3(Z[ζp])⊗Q ⊂ C(p)2⊗Q.

Theorem (??) shows that C(p)2 ⊗ Q ⊂ L(p)2. So δ provides an isomorphism

L(p)2
C(p)2 ⊗ Q

=
Λ2Cp ⊗ Q

δ(C(p)2)
.

Thanks to (??) the right hand side is isomorphic to H1(X1(p), Q)+. So we get

Theorem 3.14. Let us assume (??). Then there exists a canonical isomorpism

L(p)2
C(p)2 ⊗ Q

= H1(X1(p), Q)+.

Proof of theorem (??). It is easy to show that L̃i1,1(a1, a2) is defined over S∗
p :=

Spec Z[ζp][ 1p ]. One has δL̃i1,1(a1, a2) ∈ Λ2Cp modulo p-torsion. So by (??)
there exists a 2-framed mixed Tate motive X over Sp such that M · δ(X −
L̃i1,1(a1, a2)) = 0 for certain M ∈ Z . So M(X − L̃i1,1(a1, a2)) represents a class
in Ext1MT (S∗

p)(Q(0), Q(2)), which is given by
∑

naL̃i2(ζa
p ) and thus defined over

Sp.
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4. Multiple polylogarithms at roots of unity: fragments of the
picture

1. Motivic point of view and its consequences.

Theorem 4.1. a) Suppose that ap
i = 1. Then L̃in1,...,nl

(a1, ..., al) is a
mixed Tate motive over the scheme S∗

p := Spec (Z[x]/(xp − 1)[ 1p ]).
b) In particular ζ̃(n1, ..., nl) := L̃in1,...,nl

(1, ..., 1) is a w-framed mixed Tate
motive over Spec Z.

Let L(Z)• be the free graded Lie algebra generated by elements e(2n+1) of
degree −(2n + 1) (n ≥ 1) and UL(Z)∗• be the dual to its universal enveloping
algebra (graded by positive integers). Let f3, f5, ... be the functionals on the
vector space generated by the vectors e3, e5, ... such that < fi, ej >= 0. Then
UL(Z)∗• is isomorphic to the space of noncomutative polynomials on f2n+1 with
the shuffle product.

Let Zw be the Q-vector space generated by the numbers ζ(n1, ..., nl) of weight
w. Then Z• :=

∑
Zw is obviously an algebra.

Conjecture 4.2. a) The weight provides a grading on the algebra Z•.
b) One has an isomorphism of graded algebras

Z• = Q[π2] ⊗ UL(Z)∗• deg(π2) = 2.

In particular Z• should have a natural structure of a graded Hopf algebra.
Part a) means that relations between ζ’s of different weight, like ζ(5) = λ · ζ(7)
where λ ∈ Q are impossible.

Let F(2, 3) be the free graded Lie algebra generated by 2 elements of degree
−2 and −3. UF(2, 3)∗ is isomorphic as a graded vector space to the space of
noncommutative polynomials in 2 variables p and g3 of degrees 2 and 3. There
is canonical isomorphism of graded vector spaces Q[π2]⊗UL•(Z)∗ = UF(2, 3)∗.
The rule is clear from the pattern (π2)3f3(f7)3(f5)2 −→ p3g3(g3p

2)3(g3p)2. In
particular if dk := dimZk then one should have dk = dk−2 + dk−3. Computer
calculations of D.Zagier lead to this formula for k ≤ 12. Just recently much
more extensive calculations, also confirming the formula above, were made by
D. Broadhurst.

Remark. Let π
(l)
1 (P1\{0, 1,∞}) be the l-adic completion of the fundamental

group. One has canonical homomorphism

ϕl : Gal(Q̄/Q) −→ Outπ
(l)
1 (P1\{0, 1,∞}).(24)

It was studied by Deligne, Ihara and others (see the beautiful talk [Ih] delivered
by Ihara in ICM-90, Kyoto and references there). Conjecture (??) is closely
related to some conjectures/questions of Deligne [D] and Ihara about the image
of the map (??) and Drinfeld [Dr] about the structure of the Grothendiek-
Teichmuller group. Namely, conjecture ?? means that the image of the map (??)
should be as big as possible, i.e. the field stabilized by Kerϕl is the maximal
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pro-l extension of the l∞-cyclotomic extension of Q unramified outside l, and
that the Lie algebra of the Grothendiek-Teichmuller group should be isomorphic
to L(Z)•.

Theorem 4.3. Let us assume (??). Then

dimZk ≤ the dimension of the degree k part of UF(2, 3)∗.(25)

This is a consequence of the part b) of the previous theorem.

2. On a generalization of conjecture ?? to multiple polylogarithms at
roots of unity. Let Z(N)w be the space of Q-span of the numbers

L̄in1,...,nl
(ζα1

N , ..., ζαm

N ) :=
1

(2πi)w
Lin1,...,nl

(ζα1
N , ..., ζαm

N ).

Then Z(N)• :=
∑

Z(N)w is a bifiltered by the weight and by the depth.
Let L(S∗

N )• be the free graded Lie algebra generated by the Q-vector spaces
K2n−1(S∗

N ) ⊗ Q in degrees n ≥ 1. It is isomorphic to the Lie algebra of the
(unipotent part of) the Galois group of the category MT (S∗

N ). This follows
from (??) and the Tannakian formalism (see s.2.4).

Conjecture 4.4. a) There exists a quotient C(N)• of the graded Lie algebra
L(S∗

N )• such that one has an isomorphism of filtered (by the weight on the left
and by the degree on the right) graded spaces

Z(N)>0/Z(N)2>0 = C(N)∗•.

One can deduce from theorem ?? and the motivic formalism the upper bound:
dimZ(N)w/products ≤ dimL(S∗

N )w.

Example. Using Borel’s computation of K-groups of number fields [Bo] we get
the following explicit description of the Lie algebra L(S∗

p)•.
a) If p = 1 then L(Spec Z)• is a free graded Lie algebra with one generator in

all odd degrees starting from 3, (corresponding to ζ̄(3), ζ̄(5), ...).
b) Let p = 2. Then L(S∗

2 )• is a free graded Lie algebra with one generator in
each odd degree (corresponding to (2πi)−1 log 2, ζ̄(3), ζ̄(5), ...).

c) Let p > 2. Then rkK2n−1(S∗
p) = p−1

2 , n ≥ 1 and thus L•(S∗
p) is a

free Lie algebra with (p − 1)/2 generators in each positive degree (related to
(2πi)−1 log(1 − ζa

p ), L̄i2(ζa
p ), L̄i2(ζa

p ), ..., where 1 ≤ a ≤ (p − 1)/2).
The conjecture ?? claims that this bound is exact for p = 1. Nothing like

that could happen for any prime p > 7. Indeed, the only weight two multi-
ple polylogarithms are the dilogarithm and the double logarithm, so by (??)
H2

(2)(C(p)•) = H1(X1(p), Q)+. Therefore H1(X1(p), Q)+ is isomorphic to the
space of the 2-framed mixed motives over Spec Z[ζp] “missed” by the multiple
polylogarithms construction. So in general C(N)• is not free and thus smaller
then L(S∗

N )•. However recent computer calculations of D. Broadhurst [Br] show
that for p = 2 the upper bound is exact for the weights ≤ 10.
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3. Explicit description of the depth two Hopf algebra of the multiple
polylogarithms. The framed mixed Hodge structures corresponding to multi-
ple polylogarithms form a Hopf algebra. Its restriction to N -th roots of unity is
the Hopf algebra U(C(N)•)∨ whose structure miraculously related with GL(Z).
The associated graded quotient with respect to the depth filtration of the Lie
coalgebra C(N)∨• described explicitely in [G4]. Below we present the formulas in
the first nontrivial case of the depth two polylogarithms. The general case will
be treated in [G1] (see also [G3]).

Let ∗ be the product in the Hopf algebra. To simplify the formulas below,
write ex·t for exp(L̃i1(1 − x) · t). Recall ∆′(X) := ∆(X) − (X ⊗ 1 + 1 ⊗ X).

Let us extend formally the definition of L̃in1,n2(x, y) to the case when ni ∈ Z

L̃in(x) = 0, and L̃im,n(x, y) = 0 if n ≤ 0,

L̃im,n(x, y) = −L̃im+n(xy) if m ≤ 0.

Set
L̃(x1, x2|t1, t2) :=

∑
n1,n2∈Z

L̃in1,n2(x1, x2)tn1−1
1 tn2−1

2 .

Theorem 4.5. The coproduct for the framed mixed Hodge structures related to
multiple polylogarithms of depths 1 and 2 is given by the following formulas :

∆′ : L̃(x1|t1) �−→ L̃(x1|t1) ⊗ (ex1·t1 − 1)(26)

∆′ : L̃(x1, x2|t1, t2) �−→(27)

L̃(x1, x2|t1, t2) ⊗ (ex1·t1+x2·t2 − 1) + L̃(x2|t2) ⊗ ex2·t2 ∗ L̃(x1|t1)
+ L̃(x1x2|t1) ⊗ ex1x2·t1 ∗ L̃(x2|t2 − t1) − L̃(x1x2|t2) ⊗ ex1x2·t2 ∗ L̃(x1|t1 − t2).

For example

∆′ : L̃i2,1(x1, x2) �−→ L̃i1,1(x1, x2)⊗x1+L̃i1(x2)⊗L̃i2(x1)+L̃i2(x1x2)⊗L̃i1(x2)

−L̃i1(x1x2) ⊗
(
L̃i2(x1) + L̃i2(x2) − L̃i1(x2) ∗ (x1x2) +

x2
1

2

)
.

4. The motivic complex of the double ζ’s and cuspidal cohomology of
SL2(Z) ([G3]). We define the framed Hodge-Tate structures ζ̃(1) and ζ̃(n, 1)
(corresponding to the divergent series) as the limiting mixed Hodge structures
for L1(x) and Ln,1(x, y) at x = 1 and x = y = 1. Then

ζ̃(1) = 0, ζ̃(1, 1) = 0, ζ̃(n, 1) = −
n−1∑
i=2

ζ̃(n − i, i) − ζ̃(1, n) (n > 1).

For example ζ̃(3, 1) = −ζ̃(2, 2) − 2ζ̃(1, 3). Setting x1 = x2 = 1 in (??) we get

∆′ : ζ̃(t1, t2) �−→ ζ̃(t2) ⊗ ζ̃(t1) + ζ̃(t1) ⊗ ζ̃(t2 − t1) − ζ̃(t2) ⊗ ζ̃(t1 − t2).(28)
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One can show that ζ̃(2n) = 0. Using this we get from (??)

δζ̃(t1, t2) = −
∑

m,n>0

ζ̃(m) ∧ ζ̃(n)·
(
I + U + U2

)
(tm−1

1 tn−1
2 ).(29)

where U is the linear operator (t1, t2) → (t1 − t2, t1).
Let C(2)

w be the Q-vector space spaned by ζ̃(n1, n2), n1 + n2 = w in the
Lie coalgebra of framed Hodge-Tate structures (i.e. modulo the products ζ̃(n1) ∗
ζ̃(n2)). Set C(1)

n :=< ζ(n) >Q and C(1)
• := ⊕C(1)

n .

Theorem 4.6. (G3)

a) One has a canonical isomorphism

Coker
(
C(2)

w
δ−→ (Λ2C(1)

• )w

)
= H1

cusp(SL2(Z), Sw−2V2)∨.

b) The kernel of this map is generated by ζ̃(w), so it is zero when w is even
and one dimensional when w is odd.

Here V2 is the standard SL2-module of dimension 2. Part a) follows immedi-
ately comparing (??) with the Eihler - Shimura theory of periods(see [La]).

From this we immediately conclude that (k ≥ 1)

dim C(2)
2k+1 = 1, dim C(2)

2k = [
k − 2

2
] − dimS0

2k(SL2(Z)) = [
k

3
] − 1.(30)

For the l-adic version of the story a result similar to (??) was found inde-
pendentely and simultaniuosly by Y. Ihara and N. Takao (unpublished, see the
statement in the appendix to [Ma]). For 2k = 12 see [Ih2]. (I am grateful to Y.
Ihara and M. Matsumoto for this information). Let d

(2)
w be the quotient of the

Q-vector space generated by ζ(n1, n2) modulo the products ζ(n1)ζ(n2) where
n1 +n2 = w. L. Euler ([E]) discovered that d

(2)
2k+1 ≤ 1 . Using the double shuffle

relations D. Zagier proved that d
(2)
2k is not bigger than the right hand side of

(??), and conjectured that this bound is exact. ([Z1-3]).
The Lie algebra C(N)∨• ⊗Q Ql should be isomorphic to the Lie algebra of the

Zariski closure of the image of the canonical homomorphism

ϕl
N : Gal(Q̄/Q) −→ DerOutLieπ

(l)
1 (P1\{0, {ζα

N},∞}).(31)

Here {ζα
N} is the set of all N -th roots of unity.
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