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To my teacher Israel Moiseevich Gelfand on the occasion of his 80th birthday

ABSTRACT. Let E be a vector bundle over an algebraic manifold X . An
explicit local construction is given of characteristic classes c,(E) with values
in bi-Grassmannian cohomology that are defined in §1. In the special case
n =dimE it reduces to the construction in [BMS] of ¢,(E) with values in
the Grassmannian cohomology.

Our construction implies immediately an explicit construction of Chern
classes with values in H"(X, gnM) , Where gnM is the sheaf of Milnor’s
K-groups.

A construction of classes ¢,(E) with values in motivic cohomology is
given for n < 3. For n = 2 it could be considered as a motivic analog
of the local combinatorial formula of Gabrielov, Gelfand, and Losik for the
first Pontryagin class (see [GGLY)). The reason for the restriction # <3is
the present lack of a good theory of n-logarithms for n > 4. Explicit con-
structions of the unjversal Chern classes c, € H" (BGL,,» , gﬁ”) and, for

n < 3, of classes ¢, € Hj;'(BGLm. , Z(n)) (H:« is the motivic cohomol-
ogy) are given.

§1. Introduction

1.1. Chern classes with values in H"(X s énM) . Let L be a line bundle
over X'. There is the following classical construction of oL)eH l(X , Y.
Choose a Zariski covering { U;} of X such that L| Y, is trivial. Choose non-
zero sections 5; € I(U;, L). Then s;/5; €T (Uint , @%) satisfies the cocycle
relation and hence defines a cohomology class ¢, (L) € H 1(X , O,

Let us define the presheaf of Milnor’s K-groups on X as follows: its
| section over an open set U is the quotient group of X (U)®--- ®E"(U)

J

S
n times

by the subgroup generated by elements

g1,®"'®gk®f®(l_f)®gk+3®"'®gn, g,'af, l_fEﬁ*(U)
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170 A. B. GONCHAROV

Let us denote by K :{ the sheaf associated with this presheaf. We will denote
+> J,} the image of f, ® - ®f €T U)®" in V(%)

In §3 for any vector bundle E over X an explicit construction of the
Chern classes c,(E)e H'(X, I=(”M) will be given.

The construction of c,(E") for an n-dimensional vector bundle E” fol-
lows from the results of [S1] and [BMS, Chapter 1]. More precisely, let U; be
a Zariski covering such that E" g is trivial. Choose a section 5, e I(U,, E")
such that 5, (x), ..., S (x) arein general position on U,

fyod
n
U,-"+l . Then S = Lkt a; (x)- 5;, (x) and

M
(g (x),..., 4, (x)} €K, (U,-,._,im)
is a cocycle in the Cech complex,

I will generalize this construction to vector bundles of arbitrary dimen-

sion and show that, being applied to ¢,(E), it gives the above cocycle for
¢, (detE).

=0, N

n+i

1.2. An application. There is a canonical map of sheaves
M n n n
én _)Qlog‘—)szclt—)'Q 4
- ,fn}l—-nz’logfJ A--Adlog f,.
Here Ql';g (respectively Q) ) is the sheaf of n-forms with logarithmic singu-
larities at infinity (respectively closed n-forms). Therefore we get a construc-

tion of characteristic classes with values in H"(X, Q) and H"(X, Q).

Note that Atiyah’s construction provides us with characteristic classes in
H'(X, Q" ([A], see also [Har]).

1.3. The Grassmannian bicomplex and bi-Grassmannian cohomologz (see
[G1, G2], compare with [GGL, BMS, S3D' Let Y be a set and C,(Y)
be the free abelian group generated by elements Wosevs y,) of ¥ .

Y x...xY . Thereisa complex (Q(Y), d), where
n+l1

AWy, -5 3,) =3 (~1)'(y,, ..., Dis ooy 1), (1.1)
=0

This is just the simplicial complex of the simplex whose vertices are labeled by
elements of Y. Suppose that a group G acts on Y. Let us call elements of
the quotient set G\y"! configurations of elements of ¥ . Denote by C,(Y)
the free abelian group generated by configurations of (n+1) elements of Y.
There is a complex (C(Y), d), where d is defined by the same formula
(1.1) and C(Y)= 5*(1" e We will also apply this construction to subsets
of G\'Y " oof “configurations in general position”,

Now let us denote by C,(m) the free abelian group generated by config-
urations of n+ 1 vectors in general position in an m-dimensional vector

—
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space V™ over F (i.e., any m vectors of the configuration are linearly in-
dependent). It does not depend on the choice of vector space ¥, . In this
case there is another map:

d:C,(m)—C,_(m-1)

n -.
d:(vy, ... ,’un)v—»Z(—l)'(vilvo, s Ty, 0.
i=0

Here (v; | vgy,...,%;,...,v,) is a configuration of vectors in V, /(v;) ob-
tained by projection of vectors v ; € V™ j#i. Then there is the following
bicomplex:

N

d d
. — n+4(n+2) — n+3(n+2)—> n+2(n+2)

4 4 4 (1.2)
d d
= C, a(n+1) — C, ,(n+1) — C,  (n+1)
| d' d' d'
d d
= G — G,m) — )
We will call it the Grassmannian bicomplex (over X = SpecF ).
There is a subcomplex (C,(n), d)
d d
= Cppa(n) = C,yy(n) — C(n), (1.3)

of the bicomplex (1.2). This is the Grassmannian complex introduced in [S1,
BMS], see also [Q2].

Let us denote by (BC,(n), ) the total complex associated with the bi-
complex (1.2); in particular, BC,(n) := C,(n). We assume that BC(n)
placed in degree k and O has degree —1.

Note that

BC, (n+1)=BC,(n)/C.(n)

and there is a sequence of surjective homomorphisms of complexes
BC,(1) » BC,(2) » BC,(3) —» ---

The complex BC,(n) is “homological”, i.e., its differential has degree —1.

- Let us make from it a “cohomological” complex BC*(n) with differential 0

of degree +1. By definition BC'(n) := BC,, .(n),

2 BC%n) % BC'(n) & - 2 BC(n).
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Here BC i(n) is placed at degree i. There is also a “cohomological” version
C*(n) of the Grassmannian complex C, (7).

Now let us give a more geometrical interpretation of the Grassmannian
bicomplex that also explains the name.

Let (¢, ... €prg +1) be a basis in a vector space V . Let us denote by Gp
the open subset of the Grassmannian of g-dimensional subspaces of P’ +4
consisting of subspaces that are transverse to coordinate hyperplanes. In M]
R. MacPherson constructed an isomorphism
~p o~ { configurations of p + ¢ + 1 vectors in general }

m: G =

’ (1.4)

position in a p-dimensional vector space
Namely, m(&) isa conﬁguratlon formed by the images of e, in V/df
REMARK. The set G? is defined in terms of projective geometry. How-
ever, the isomorphism (1.4) depends on the choice of the vectors e;. This
additional data can be also visualized inside P?*?: one must add a generic
hyperplane (affinization).
Let -

Z: Var — Ab (1.5)
be a functor from the category of algebraic varieties over F to the category
of abelian groups that sends a variety X to the free abelian group generated
by F-points of X . Applying it to (1.4) we get an isomorphism

Z[Gp] i (1.6)

Coa(P)-

For each integer i such that 0 < i < p + ¢, there are intersection maps &;
and projection maps b; :

Va4 %4 P

Gq Gq 1

I
~p—1
G,
Here the subspace a,(¢) is the intersection of { with the ith coordinate
hyperplane and the subspace b,(&) is the image of ¢ under the projection
w1th the center at the ith vertex of the simplex. We get a bi-Grassmannian
G(n) :

e
= G
_ 0
IH] by L by,
G(n): = & = (L.7)
an+l
1l by Ll by by 11 8,
~ a4

G, = G
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Applymg functor (1.5) to it, considering differentials d = 3 (—1)’ a and d' =

S(=1) b; and using isomorphism (1.6) we get the Grassmannian blcomplex
Now let us sheafify these constructions.
A bicomplex Z[G(n)] of sheaves on X, called the Grassmannian bicom-

plex, is constructed as follows. For a point x € X, the stalk of Z[@(n)] at

x is the formal linear combinations of germs at x of maps from X to G”
The corresponding bicomplex looks as follows:

! |

ZiG(n)]: -+ —— ZIGI] —L— ZIGI] (1.8)

ol
C—— 2G|l —— ZGy]
Here g[@g] is placed at degree (n,0) and d (respectively d') has degree
(1, 0) (respectively (0, 1)). The hypercohomology of the total complex as-
sociated with this bicomplex of sheaves i is the bi-Grassmannian cohomology
of X. We will denote it by H"(X, Z[G(n)]) or H'(X, BC*(n)). Note
that the Grassmannian cohomology of [BMS] maps canonically to the bi-
Grassmannian one, but there is no inverse map.
In § 2 we construct characteristic classes ¢ L(E) € H 2n (X, g[é(n)]) . There
is a homomorphism of complexes of sheaves

Z[G(n)] — K [-n] (1.9)
(see § 3) that provides a construction of characteristic classes
c,(E)e H"(X, KM).

14. Polylogarlthms (compare with [GGL, BMS, HM]). Now let F = C.
Note that G0 is almost canonically isomorphic to (C*)" (see Remark in 1.3
above). Indeed, according to (1.4) a point ¢ € Go defines an (ordered) con-
figuration of n + 1 vectors in general position in C": m(¢) = (Vg5 +ee s 0,).
So v, = Zl 1 Z;v; and the map £+ (z, ..., z,) provides an isomorphism
ag = (CH". Therefore there is a canonical multivalued holomorphic #— 1

form

1 n . —
'wg = HZ:(—I)'logzidlogz1 A---ANdlogz,A---Adlogz, (1.10)
i=1

~n
on G0 .
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Consider the multivalued Deligne complex @(n)Y on avariety Y (Q is
placed at degree 0, 4 has degree +1):

L m Lo L LFTm) -0

Here Q' denotes multivalued holomorphic differential forms, i.e., holomor-
phic differential forms defined on the universal covering space ¥ of Y.
We want to consider a triple complex D, which is the multivalued complex
@(n)a(n) in the vertical direction and is a double complex constructed from

the bi-Grassmannian a(n) in the horizontal directions. All differentials have
degree +1. '

A 2n-cocycle in the complex D is just a collection of (2n—1—p—g)-forms
{w?} such that

dw{;=Z(_U"a;*wlq’_l+Z(—1)"b;‘w§“. o (1.11)

CoNJECTURE 1.1. There exists a 2n-cocycle L, in the triple complex D
such that its wg-component is given by formula (1.10).

The collection of forms {w } is, of course, the Grassmannian n-logarithm
conjectured in [BMS, HM]. However for an explicit construction of the
Chern classes in Deligne cohomology we have to construct the entire bi-
Grassmannian n-logarithm and it is not sufficient to construct only its Grass-
mannian part. The main construction of this paper (see § 2) yields a construc-
tion of

¢,(E) € Hy' (X, Q(n),

using the bi-Grassmannian polylogarithm L, . The coincidence of this class
‘ with the one constructed by A. A. Beilinson [B2] is guaranteed by formula
}‘ (1.10) (see Theorem 5.11). The problem of construction of a collection of
uii ) forms {a)" } satisfying (1.11) goes back to [GGL], see also [You], where the
it real—valued forms on the corresponding manifolds over R were considered
' (forms S7°7). :

The most interesting component of L, is a multivalued function P, :=
wZ_ , on @:_1 . The cocycle condition means that it should satisfy two
“(2n + 1)-term” functional equations

2n .

Y (-1)a; P, = (2ni)"q,, (1.12a)
i=0

2n :

S (=15, = (27i)"a,, (1.12b)

i=0

where ¢, , g, € Q. Note that a;f‘ , b;‘ make sense after lifting maps g;, b;
to the simply connected covering spaces.
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For a much more precise “motivic” version of Conjecture 1.1 see Conjec-
ture 6.1. It is formulated for any field F and implies Conjecture 1.1, when
F=C. S

Instead of the Deligne complex @(n) & one could consider the real Deligne
complex R(n)g thatis the total complex of the bicomplex

DALY R N LR AR
R(n)g: Tn" Tnn (L.13)

n [7] n+l 8
QX——»QX. — e

where (S}, d) is the de Rham complex of the real-valued forms, (Q°, 9) is
the de Rham complex of the holomorphic forms with logarithmic singularities
at infinity n, = Re for odd » and =, = Im for even n, and Sg, is placed
at degree 1.

One can consider the triple complex I, which is the complex R(#)g,
in the vertical direction and is the double complex constructed from the
bi-Grassmannian Q(n) in the horizontal directions. Actually it is more
natural to consider the complex that computes hypercohomology of the bi-
Grassmannian a(n) with coefficients in R(n), (for this we should replace
the complex (QZ",8) in (1.13) by its Dolbeaux resolution (Z7"*?) for
example), but it is not important for our purposes.

CoNJECTURE 1.1'. There exists a 2n-cocycle ]L; in the triple complex D'
such that its component over G(')' is given by the following formulas:

) [(n—1)/2] jn—2k—1

n —
@ =7, Alt 2k + Di(n—2k — 1)

!log|21|d10g|22|/\---
dl d d st 19
Adlog|z,, |ANdargzy s A A argzn) €S >

"

a)(')l =dlogzl/\---/\dlogzneQ:’Y

(dw} =m,(w) ). The corresponding component P, of L, on G!_, should
satisfy the “clean” (2n + 1)-term equation

2n - X

Y (-1)aiP, =0, (1.14a)
i=0

2n .

S (=1)'b]P, =0. (1.14b)
=0

REMARK. (wgl , a)g”) is just the product in the real Deligne cohomology
of 1-cocycles (log|z,|, dlogz,) € H'(Gj, R(1)g).
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In [GM] L. M. Gelfand and R. MacPherson constructed for even n a
function P on the real “middle Grassmannian” G _(R), that satisfies the
conditions (1 12).

On the other hand, there are the classical polylogarithms Li .(z) that are
functions in one complex variable z. They were defined by L. Euler as
functions on the unit disc |z] < 1 given by absolutely convergent series

o _k
Lln(z>=z%,

and can be continued analytically to a multivalued function on
cp! \ {0, 1, co} using the formulas

Li,(z) = —log(1 — z),

z_. dt
=A Lln—l(t) T

It turns out that Li,(z) has a remarkable single-valued version (By =1,
=-1/2, B,=1/6, ... are Bernoulli numbers)

Re(n: odd) Vi
Z(2) = Im(n: even)(]; k! Iog |[- L4, (Z))’ nz2,

Z(z) = log|z|.

For example
Z(z) = Im(Liy(z)) + arg(l — z) - log | z|

is the Bloch-Wigner function, and
Z(2) = Re(Liy(2) - log|z| - Liy(2) + 1/31og” || - Li, | ])

was used in [G1]. The functions £ (z) for arbitrary n were written by
D. Zagier [Z] Explicit formulas expressing the bi-Grassmannian polyloga-
rithms L,, ]L in terms of the classical polylogarithms for n < 3 were given
in [G1] (see also [G2] and §§ 5, 6 of this paper). For example ]I.,3 , that is

a function on the 9-dimensional manifolds @; , is expressed in terms of
%Z,(z). However for n > 4 the “natural” cocycle L, cannot be expressed by
the classical polylogarithms (the reason was explalned in § 1 of [G1]).

An interesting geometrical construction of the Grassmannian 2- and 3-
logarithms was suggested by M. Hanamura and R. MacPherson [HaM]. The
existence of the Grassmannian n-loganthms for n < 3 was proved in [HM].

It is interesting that in formulas for ]L ,» < 3, from §9 of [G1] all forms

a);’“ vanish for { > 0. This means that the' bi-Grassmannian n-logarithms

for n < 3 reduces essentially to its Grassmannian part {co }. This is a
nontr1V1a1 fact about the Grassmannian n-loganthms n<3. But this is not
true for n > 4. For example, already forms col * cannot be chosen equal
to zero for n > 4. This is another important difference between cases 7 < 3
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and 7 > 4. It shows why we must enlarge the Grassmannian polylogarithms
to the bi-Grassmannian ones. :

1.5. The universal Chern classes ¢, €H " (B GLm. » K ) Recall that the
classifying space for a group G can be represented by the s1mp11c1a1 scheme

BG,: *:GEG

In §4 an explicit construction will be given for the universal Chern classes
¢, € H" (BGL,,(F),, gﬁl) , m > n. It is a refinement of the construction
from §2 and, of course, implies it immediately. More precisely, a Zariski

covering {U,},.; defines a simplicial scheme U, :

]—IU: ]—[ 101 ]—-[ U"oil’.z“.

ier ig<i €l ig<iy<i,€l
A G-bundle E over X given by its transition functions & € r (U G)
defines a canonical map of simplicial schemes u: U, — BG, . Our G—bundle.

is the inverse image of the canonical G-bundle EG, < BG, over BG, and
c,(E)=u"c,.

As a byproduct, an explicit algebraic construction of cohomology classes
generating the ring H* (GL,,) is obtained. The existence of such a description
of the usual fopological cohomology of GL, was conjectured by A. A. Beilin-
son [B3]. ‘

1.6. The universal motivic Chern classes. In §4 an explicit construction of
such Chern classes

¢, € Hy(BGL,.,%(n)), n<3,

will be given. It implies, in particular, an explicit construction of the Chern
classes c,(E) with values in Deligne cohomology H;" (X, Z(n)) in terms of
classical n-logarithms (#n < 3). A cocycle representing the usual topological
characteristic class ¢,(E) € H 2 (X, Z) in the Cech complex was constructed

~ by J.-L. Brylinski and D. MacLaughlin [BM2].

A local combinatorial formula for all Pontryagin classes was suggested by
I. M. Gelfand and R. MacPherson [GM2].
Let Hcts( , R) be the ring of continnous cohomology of a Lie group G.
It is known that

++(GL,,(C), R) = (‘"” b, B ),
b e HXY(GL,(C), R).

ct:

cts

As a byproduct of the construction of the universal Chern classes ¢, €
H (BGL,,(C), R(n)), we get an explicit formula for (measurable) cocycles

representing classes b( ) , for n < 3 and arbitrary m > 2n—1 using the clas-
sical n-logarithm. The formula for b, is well known: b,(g) := log|detg],
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g € GL, (C), is a 1-cocycle. The formula for bgz) was given by D. Wigner
in the middle of the seventies, and the formula for b§3) by the author ([G1],
see also [G2]). A formula for b._g'") was written also by Kioshi Igusa (unpub-
lished).

Note that there is a canonical map

M n
H,(X, K¥)— H'(X K ),

and it was shown by Soulé [So] and by Nesterenko and Suslin [NS] that this
map is an isomorphism modulo torsion. This together with characteristic
classes ¢, (E) € H"'(X, K ) of Gillet [Gil] proves the existence of ¢,(E) €

H'(X, K nM) but does not give any precise construction.

This work was initiated by A. A. Beilinson who explained 1o me that there
is no explicit construction of the Chern classes with values in H'(X, gnM)
as well as in H"(X, Q) or H'(X, Ql':)g) and emphasized importance of
such a construction. '

I hope it is clear from the introduction how much I benefited from the
paper [GGL] of A. M. Gabrielov, I. M. Gelfand, and M. V. Losik.

The final draft of this paper was prepared during my stay at MIT, Max-
Planck-Institut fiir Mathematik, and MSRI, and was supported by NSF Grant
DMS-9022140. I am grateful to these institutions for their hospitality and
to S. Bloch, J.-L. Brylinski, D. Kazhdan, R. MacPherson, V. V. Schechtman,
and especially A. A. Beilinson for useful conversations and encouragement
to publish this paper. : {

§2. Affine flags and Chern classes in bi-Grassmannian cohomology

2.1. Affine flags. Let ¥V be a vector space over a field F . By definition a
pflagin V is a sequence of subspaces

OcL'cr’c...cr’, dimL'=;

An affine p-flag L* is a p-flag together with choice of vectors /' € L"/L’._l R
i=1,...,p (L° = 0). We will denote affine p-flags as (I', s ).
Subspaces L' can be recovered as the ones generated by /', ... 1. [} =
(..., n.
We say that an (n + 1)-tuple of affine flags
. 1 . 1
L0=(l,...,lg),...,Ln=(ln,...,1,‘,’) (2.1)

is generic (or in the general position)
dim(L + -+ L) = ig+---+i  whenever fy+ i, <dimV, (2.2)

Let A”(m) be the manifold of all affine p-flags in an m-dimensional vector
space V, . Itisa GL(V,,)-set, so as usual (see 1.3 of the Introduction) one
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!
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A

21}

)
Y
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FIGURE 1. An affine 2-flag

can consider free abelian groups C,(4”(m)) of configurations of (n + 1)-
tuples of affine p-flags in general position in V., - Further, there is a complex
of affine p-flags C (4”(m)):

d d d d
5 G, (4 (m) 5 C (4 (m)) S C,_ (A7 (m) S -
. . 1 i, ,e e . (23)
d:(Ly, ..., L) = > (-1)"(Lg,..., L}, ..., L)
i=0
In particular, C, (Al(m)) = C,(m). Let us define a map of complexes
T: C (4" (n+p)) - BC,(n) (2.4)
as follows: for
att = (v, e, T e QA () (k> n),
set
1,k ' | [ +1
T@") =@ Y (@re--eLkvlt, . . o
9=0 j 4o otiy=p—gq
i 20 (2.5)
k—n
g=0
Here (Lé°@' ‘ -GBL,';" | vé"“ e U,i"“) is the configuration of vectors in the
space V, =V, / @I;:o L:; equal to projections of vectors 'v(‘)0+l y ey v,'("H .

. i+l . . i . . .
(Since ve™" is a vector in V./Lg, we can project it to V)
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Key LEMMA 2.1. T isa morphism of complexes.

PROOF. Let Ty (n+q): C(4”"! (n + p)) - C,(n+ q) be the Cp(n + q)-
- component of the map T'. We have to prove that (see (2.6))

doTy(n+gq)= Tk_l(n+q)—d/oTk(n+q+ 1),
Ce(4" (n + p))

Culn+qg+1)  (2.6)

[«

-4, Co(n+q)

For a given partition g+ + i, =p —q let us consider the expression

C.(n+q)

. i -
dLye--o Lk ve*, .. vt |
k o . oo — ) 2.7)
iy iy ) g+l i+ il (2.
=) (-1) (Le @@ Lf ot , ... v s U,
j=0

For | ;=1 the corresponding term in (2.6) will appear in the formula for
T, _(n+ q)(ai“) . For I;>1 such a term appears in the formula for

L i—1 i i+l i i+l
a’(Lo"eB---eBLj’ &Lk | vy ,...,vjf,...,vk" ).

2.2. A construction of Chern classes in bi-Grassmannian cohomology. Let
us denote by ME? (X) the bundle of affine p-flags in fibers of a vector bundle
E over X. Choose a Zariski covering {U;} of X such that E [ is trivial.
Choose sections '

Li(x) e T(U;, %7 (x))

such that for any i, < ... < i, affine p-flags L,.'o(x), cees Li'k(x) are in
general position for every x ¢ U i ‘

Let (¥ (n)y, d) be a complex of sheaves in the Zariski topology on X
obtained by sheafification from a complex (¥ (n)*, d), where 8 has degree

+1. Denote by F (n), the corresponding homological complex:

CR

2 F(n), 2, F (), 2 F(n),_, 2o
where, by definition, & (n), := g'(n)Zn—i. ,
Suppose that we are given a morphism of complexes
T,: C (4" (n+p)) » F(n),. (2.8)
Then -

T(Ly(x), ..., L, (x)) € F ()" | (2.9)

Uiguig
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is a 2n-cocycle in the Cech complex for the covering {U;} with values in the
complex of sheaves # (n)} . (In fact, the chain (2.9) is a cocycle if and only
if the map (2.8) is a morphism of complexes.)

A different choice of sections L;(x) gives a cocycle that is canonically
‘cohomologous to the previous one. Therefore the cohomology class

¢, (E) e H™(C(U,, F(n)")

is well defined.
Applying this construction to the bi-Grassmanian cohomology and using
the Key Lemma 2.1 we immediately obtain the following theorem.

TuroreM 2.2. T(L; (x), ..., L; (x)) € Ezn_k(n is a cocycle in
fy b = Uiy

the Cech complex for the covering {U,} with values in the bi-Grassmannian
complex.

The homomorphism (2.8) for other cohomology theories & (n)*, includ-
ing the motivic one (hence Deligne, /-adic, KM , etc. cohomology), should
be obtained as a composition

C, (4" (n+p)) 5 BC,(n) = F(n),.

This will be proved for Krjl” -cohomology in § 3 and for motivic cohomology
of weight <3 in §5.

However, 1 want to emphasize that the bi-Grassmannian cohomology 18
certainly different (larger) than the motivic one.

§3. Chern classes with values in H" (X, KM

=n
3.1. In §2 we constructed Chern classes with values in A 2n (BC *(n)). To
obtain Chern classes with values in H" (X, éﬁl) it is sufficient to define a
morphism of complexes
BC,(n) — Ky (F)[-n], (3.1)

i.e., a homomorphism 7n(n): C,(n)— K,J,”(F) such that f,(n)od = f,(n)o
d=0:

dl
d
C‘n+2(n+ 1) - Cn+l(n+ 1)
ls
d d
—— C,, 0 —— G
Ju(m)
4

KM(F)
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Now let us define a homomorphism
f(n): C (n) — A"F",
‘ f [ as follows (compare with § 3.2 in [G2]). Choose a volume form w € dey(V,)"
ik =AY(V,)" (where dim V" =n). Set
! A, ..., v,)i=(w, v, A Av,) € F*, v.eV

; 1 n
4 LMy, ., 0,)=Alt A Aly,...,T,...,v) e A"F" (3.2)

!

a |
!

|

|

|

: n !
1 1€ign !

:i
“ ‘1
1 : E Here Altg(v,, ..., v,) = EaeSn+l(—1)l"lg(va(0) yeres va(n)). For example,
! | ;‘ ‘ up to a 2-torsion we have
. R i
i‘ 5 it H(2) vy, vy, v,) = 2(A(v,, v,) ANA(yy, v)) ;
N 3 : A, 1) AW, 1) +HA(Yy, v,) AA(Y,, ). f
i 1: 5 LEMMA 3.1. f,(n)(v,, ..., v,) does not depend on w . i
‘ t {éf ’_f PROOF Let f (n) be a homomorphism defined using another volume l
1 ‘i 1}‘ form w' = lw . Then |
| SR _
gl (h(n) = Fu(m) @ .. 0) = AA YA, |
i " where A, ; € A" 'F* depends on vo,...,v,,...,vj . So A, !
" I symmetric on v;, v;. But the lefi-hand side is antlsymmetrlc by deﬁmtxon !
:5 T Therefore A, = 0 i
1; i i ‘ LEMMA 3.2. The composition l
A4 :, I .
il d AQ)
l i' i Cop(n+1) — C (n) == A"F* | (3.3) l
| B | is equal to zero modulo 2-torsion. \
i : is 1 I Proor (Compare with the proof of Lemma 3.4 in [G1]).
‘ o i , n+1
N fn(n)od(vo,...,’un+1)=A1t/\A(v0,'u1,...,'sz,...,vnH):O,
: j=2

because Alvg, v, ..., 7, s «v+» Upyy) 18 invariant under the transposition of

v, and v, modulo 2-torsion.

ProrosiTION 3.3. The composition ‘ l

C,,(m) L € (n) O, > KY(F) (3.4)

is equal to zero. !

i Proor (Compare with the proof of Proposmon 2.4 in [S1]). There exists

a duality *: C, 1(m) = Cnq(n), 2 = id, that satisfies the following i
properties (see § 3.8 in [G2]). : L

|
[
R 1. % commutes with the action of the permutation group S,
‘ I
i
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2. 0 x(lyy ey ) = (s -5 b)) then
sy b Lo = s T D),

3. Choose volume forms in ¥, and V, and consider the partition

{,...,m+ny={i, < <i}u{i < <j}
A )
Then _A(l_l_) does not depend on a partition.

This duality can be defined as follows. A configuration of (m + n) vectors
in an m-dimensional coordinate vector space can be represented as columns
of the m x (m + n) matrix (I, , 4). The dual configuration is represented

by the n x (m+ n) matrix (-4 1 ). Using the duality we can reformulate
Proposition 3.3 as follows: the composition

h

L M
Con(@ -5 C,(1) === K (F)
is equal to 0. Here
F(m)@gs -5 v,) 1= AltAWR) AAw) A+ AA,_,) € A"F*.
Consider the following diagram:
dl
Corr(2) — C,(1)

[ [7em

ZIPI\ {0, 1, c0}]® A" °F* ——

Here Z[P1 \ {0, 1, co}] is a free abelian group generated by symbols {x},
xeP \{0,1,00}, : {x}®y, A Aynzn—»(l— XYNXAY N AV, 5.
Note that by definition Cokerd = K (F). The homomorphism fn +1(n) is
defined as follows:

fn+1(n)('uo’ ’Un+1) = n! [vo’ Tt 'Un+1]’

where [v,, ... ] is defined by induction:

n+l
[Wgs Vy» Uy V31 i={r(vg, V15 5 v,)} € Z[PF\{O, 1, oo}],

—1 n+1
[Wys eovs Uyt =7 -Alt(sl-( ) )[vl,...,vn+l]®A(v0,v1)
n-2 n+1 .
+Zsk< i )[vo,vk+1,...,'un+l]®A(vo,'ul)A---AA(vO,'uk)).
k=2

Here ¢, = +1. More precisely, 7, = 2+ (M) + () + () g =
o Vo
+1,and ¢ = (-1)", i>1,foreven n and y, = P ((:ﬂ)+(":1)+(ﬁ:{})) ,
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g, =-1, ¢ = +1, i > 1, for odd n. To prove the last formula one can
write
[y, 5 Upyy] = Al (al vy, e vn+1]®A(vo, v,)

n—3

+ 3 s Vo -+ > UppJ® Ay, ) A= AAy, V)
k=2 )

with some unknown ;. Then the condition
Oy, oo s Vpprd = (1/n!) AltA(vy, v,) A AA(Yy, v,)
gives exactly n — 3 simple linear equations on ¢; .

3.2. We get the following construction of the Chern classes ¢, (E) €
H'(X, éi”) Choose a Zariski covering {U,} of X such that E |y is triv-
ial. Choose sections L;(x) e I'(U;, ME” (x)) such that for any i, <’ s <
affine flags L:o (x), ... L;" (x) are in general position for every x € Ul.o_" i,

THEOREM 3.4, The chain
FAm(TEL(), s L) €K, (@ (T ) (3.5)

is a cocycle in the Cech complex for the covering {U;}-

Proor. Follows from Lemmas 3.2, 3.3 and Theorem 2.2.

By definition, c,(E) is the cohomology class of the cocycle from Theo-
rem 3.4. It does not depend on the choice of sections Li(x).

EXAMPLE 3.5. Recall that ¢ (E) = ¢,(detE). So ¢,(E) can be computed
as follows: choose m = dimE linearly indepéndent sections l:."(X ) (1<
a<m)of Bl . Then ([f(x)) = g;(x)- (1%(x)), where g;;(x) € GL,(F) is
the transition matrix and det g; j(x) is a 1-cocycle representing ¢, (E).

Now let (li1 yeees llf" ) be the affine flag corresponding to the m-tuple of
vectors (lil I l;" ). Let us prove that the cocycle (3.5) computed for these
flags cooincides with detg,; .

PROPOSITION 3.6. We have fl(l)(c((l,.l', I, (l}, cees ZJ'."))) =detg;;-

PROOF. Let us say that a frame (f L. ..o f™) is associated with an affine
m-flag (I', ..., 1") if
TR N L Y A

and the images of f’chl and ! in LF! /Lk coincide.
The set of all frames associated with a given m-flag is a principal homo-
geneous space over the group of unipotent matrices.
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LEMMA-CONSTRUCTION 3.7. For two affine m-flags
Li=(,...,v,) and Ly =(w,, ..., w,),
in general position in V" there exist exactly two frames associated with both
of them.

ProOE. We have the following isomorphisms of one-dimensional vector
spaces:
85 Lllc/Lllc —)L nL,” e
—k+1 —k ~ —k+1
sy LR L ot nL;” i
Put flk = 5,(v), fzm_kJrl i= 8,(W,,_,)- Then the frames (fll; e
and ( le; ... J3") are associated with both L] and L.
W50 0,,) =8 (W, .0, W), g € GL, (F).

Then detg =[], 4, since g =n,_-A-n_
n_ A=) n,
(w) == () =5 () =5 @),

where n_ (n,) is a lower (upper) unipotent matrix and A is the diagonal
matrix with entries 4, (the Gauss decomposition).

On the other hand, the left-hand side of the formula in Proposition 3.6 is
equal to

fl(l)(ZLkQLmk L mk+l)_f1(1 (ch f2 ):H/’lk
k=1 k=1

§4. The universal Chern class ¢, € H"(BGL(m), , K

4.1. The Gersten resolution in Milnor’s K-theory ([Ka]). Let F be a field
with a discrete valuation v and the residue class field F, (= F). The group

of units U has a natural homomorphism U — F', u— 7. An element
n € F* is prime if ord,(n) = 1. There is a canonical homomorphism

(see [M1]):
(F)—-K,"&,) (n>0),
uniquely determined by the properties (#; € U)
o{m, uy, ..., un})={ﬁ1, ey Uyt
2 O{m, Uy, sty )=
Let X be an excellent scheme [EGA 3, 1V, §71, (l) the set of all codi-

mension i points x, F(x) the field of functions corresponding to a point
x € X W

8: KM

n+l




186 A. B. GONCHAROV

There is a sequence of groups % (n), ; here K,j,” (x) = K,’IM (F(x)):
KM (Fx)) -2, D k¥ (x) 2 P K)o Pz @

*€Xy) *€X 0 *E€X(n)

We follow [Ka] in the definition of & . Let us define for y € X, 5 and
xe€eX

(i+1
normalization of the reduced scheme {¥}. Set 6;’ =0 NF(x,) JF(x) © Ot »

y @ homomorphism 3;’ : Kﬁil (y) — K,:w(x) as follows. Let Y be the

*

where x’ ranges over all points of Y .lying over x, Oy Kﬁl(y) - K (x)
is the tame symbol associated with the discrete valuation ring &, ., and

NF(x:)/F(x) is the norm map Kjw(x') —»,Kf{(x) (see [BT, Chapter I, § 5]
and [Ka, §1.7]). The coboundary 9 is by definition the sum of these homo-
morphism 87

ProrosiTion 4.1. 9% =0,

ProOF. See the proof of Proposition 1 in [Ka].

THEOREM 4.2. The complex % (n), is exact.

Proor. See [So, Chapter 6] or [NS].

4.2. Explicit formula for a class ¢ ¢ H"(BGL(m),, énM) . Set G" =
G x - x G . Recall that

n times

5o %o 2
BG, :=ptt= G = ...

5 5,

is the simplicial scheme representing the classifying space for a group G.
We will compute H” (BG,, _K_HM) using the Gersten resolution (4.1). There-
fore, the cochain we must construct lives in the following bicomplex (G :=
GL(m)):

I

D kX, (Fu) P K,fiz(F(x))'

xeG{'gz xeG{'z)“'
T"’ ' (4.2)
M * M
D KLEFEE) S P KM (Fe)
xeGqr7! XEG(HI)

m

Ik

KM(F(G")
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For each partition j,+---+j, =m—n we define a codimension (n—r) irre-
ducible subvariety D(jg, ..., J,) € G{n_r) and an element @(jy, ..., J,) €
K:M (D(jg» .-+ » J,)) suchthata collection of all these elements forms a cocy-
cle in (4.2).

Recall that Am_"H(m) is the manifold of affine (m —n+ 1)-flagsin V.
For a partition jy+---+j=m—n define a codimension » — r manifold

Bjo,...,j, c \Am_nﬂ(m) e X Am—n+1(m)J

D

r+1 times

as follows: (Lg, ..., L;) € 5].0’__' ; if and only if

2Jr

,
: roo gy T Ity
dim (p—|=-0Lp" ) =r+ ij = dim (@Lp" ) 1.
p=0 p=0
Note that for generic (Lg, ..., L) € 51.0’,__ ; the sum +;:0LI’;P is direct
and the configurations of 7+ 1 vectors -
r

(@LI{F AN o) (4.3)

p=0 .
in V,/ EB;=0 LI’;" generates a subspace of dimension r. Recall that there is
a homomorphism (see (3.2))
7.(r): C(r) = AF* = K (F).
Applying it to the configuration of r+ 1 vectors (4.3) we obtain an element

~ M —~
w; .. € K, (F(Djo,...,j,))' (4.4)

Now choose a € A™ "' (m). Set

D, =g 8 € |(a, g4a,...,.8a)€D; i}

Jo» seen Jp

r ~ : '
Then Dfo,---» i € G(n_r) and @, ; induces an element

Josmsdy
KM(F(D 4.5
wjo,-..,j,;a €&, ( ( jo,...,j,;a))' (4.5)
Set ‘
~ o M D
@, = Y, @Djoni, © b K (F(D,.....;, 0>
Jotti=m—n Jot-eFi=m=n
. ,
@, = Z wjo,---,j, € @ K" (F(Djo’“"jr)).
Jotrti,=m—n Jotrti=m—n .

THEOREM 4.3. Collection of elements w, defines a cocycle in the bicomplex
(4.2).

ProofF. Choose a partition i+ -+ i =m-—n+r. Let g’jol be a
subvariety in the manifold of (r+ 1)-tuples of affine (m—n+ 1)-flags in 1246
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defined as follows:

s . e . r i .
& = {5, L) dlm'(pi-oLp") - (Z;zp) -1},
p:
This is an irreducible subvariety of codimension 7 — r +1.
ProrosITION 4.4, The component of 8@, on g .,i, can be nonzero only
if i, =0 for some k but i, > Oforp#k. In thls case it is equal to

——

7 r-1)(@L’ -1 ...,lik,...,zjr). (4.6)
pFk
Proor. Let Jot-+j=m-n and
1 m—n+1 | gl m—n+l, . . =
(l,...,l0 R A A ):(LO,...,-Lr)eDjo’___’j’.
Choose a volume form in subspace (l .. l’°+I cees lr1 ey lj'“) of codi-
mension 7. Then we can compute the determmant Ay, ..., (U +r) for

any m - n+r vectors in this subspace, Set

AU = Ay, oo B0 et

s L)
By definition,
~ g kiao . .
0 = Z(—l) AU+ 1), ..., AG + 1), ... » A(J, + 1)} (4.7)
k=0

The coboundary 6(7). ..,j, can be nonzero on divisors A( Jy+1) =0 in

&

Djo’ " only. The component of aa) ,..,;. onthe divisor A(j, +1) =0 is
equal to

r . . . - .
7r—1(rf 1)(@%’;: @llikﬂ | Z(J)°+1, o l]—ikﬂ s [rJ,+1). (4.8)

p=0

R I et T A 8

This formula implies immediately that the component of dw, on é’.
is zero if zk = z/,(2 =0 for some k, #k, .
It follows from (4.8) that if z > 0 for all p, the component of dw, on

s,

gx i, 18
fo(r=1 (Z( 1) (EBL' IR A 1/ S ). @9
Note that (EB L' ! | Ilo y e l ) isa conﬁguratlon of r+1 vectors in an

7- d1mens1ona1 space Therefore (4 9) is equal to

foi(r=1) od'(@L;P_l [,
| A

But this vanishes according to Lemma 3.2.
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Now suppose that i, =0, ip # 0 for p # k. Then (4.8) implies that the
component of d(@,) on g"ol is exactly (4.6). Proposition 4.4 is proved.
Theorem 4.3 follows immediately from Proposition 4.4.

4.3. Relation to the classical construction of Chern cycles. Assume that a

vector bundle £ over X has sufficiently many sections. Consider first of

all the case when dimE = n and we are interested in ¢, (E) € CH"(X).
Choose a section s,(x) € I'(X, E) that is transversal to the zero section of

E . Then the subvariety
Dy :={x € X | s5(x) =0}

has codimension » and represents the class ¢, (E) € CH "(X). Now let 5,(x)
be another generic section of E (i.e., it is transversal to the zero section of

E too). Then
D, :={xeX|s/(x)=0}

should represent the same class in CH"(X). To see this let us consider a
codimension {(n — 1) subvariety

- Dy i=A{x € X | A8y(x) + 4;5,(x) = 0 for some 1, 1, € C}.
There is a canonical rational function

A _ :
Agp = f € F(Dy) and Div(Ay,)=D,—D,.

So D, and D, are canonically rationally equivalent cycles. Now let s,(x)
be a third generic section of E. Put

Dy, = {x € X | dim(s,(x), 5,(X), 5,(x)) = 2}.
Then codim Dy, = n — 2 and there is a canonical element
Agrz = £5(2)(8y5 81> 5,) € K (F(Dyy,)) s
3('1012) =Ag A2 + Az
where 0: K,(F(Y)) — Her( ) F(y)* is the tame symbol. Continuing this
1

process we get, for a generic (r+ 1)-tuple of sections s,(x), ..., 5,(x) of E,
a codimension (n — r) subvariety :

Dy,.., :={x € X | dim(s,(x), ..., 5,(x)) = 1},
and a canonical element '
- M
’101...,- = fr(Z)(SO, EER Sr) € Kr (F(D()l...,-)) 5

satisfying the relation
r .
6(/101...) = Z(_l)l'{ol...’i\...r
i=0

(8 is the differential in complex (4.1)).

.‘mwwvmmmmawr

T
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Now let E be a vector bundle of dimension m > »n and p=m-n+1,

Let
Lo(x) = (l(x), ..., £ (x))
be a generic section of the bundle of affine p-flags of X . Put
Dy:={x € X [ly(x)A---A’(x)=0 but DA AP\ (x) 0}

It is well known (see, for example, § 3 of Chapter Il in [GH]) that the image
of the cycle D, in the Chow group CH"(X) is just ¢,(E). Let L, ..., L
be r+ 1 generic sections of the bundle of affine p-flags. For any partition
j0+"'+j,-=p—1> jk20,pUt

D(jgs ... j,) = {x € X | an (r + 1)-tuple of vectors ,

(Léo +o +Lf' | l({°+l v ooy Y generates

r
. . . r ] .
an r-dimensional vector space and dim + L,J{" = E ]k}.
p=0
k=0

_ : (4.10)
Then D( Jo» -++» J,) is a codimension 7 —r cyclein X . There is a canonical
element

LOEP @ oLl |17, | gy € K (F(D(jy, ..., 1)) (4.11)
Let us define an element ' ;
o€ I KEOG, . iy ] & (F(x)),

j0+"'+j,=17—1 XG/"(,,_,)
as the sum of elements (4.1 1): _
r . . .
Y= X0 T0(DLEIET, . 0.
Jo+ ), =p—1 k=0
THEOREM 4.5. 8(4), )= Z:zo(—l)'/lm ~

........

Proor. Follows immediately from the proof of Proposition 4.4,

4.4. An algebraic construction of the ring H*(GLm((C)) . I will construct
a nonzero class in WOHZ"_I(GLM(C), Q(n)). This vector space is one-
dimensional for m > n. Let us define forany 0< j < m—-»n a subvariety
l~)j C A" () x A" my as follows:
D;={(L}, L}) such that (L] + L7 | g, iy
is a pair of collinear nonzero vectors}.

(4.12)

. first vector . . L . . =
- The ratio —————__ in (4.12) gives canonical invertible function f; on
second vector J

D;. Now we choose an affine (m—-n+1)-flag L® in v, . Set
GL(V,)>D;:={ge GL(V,) | (¢L*, L") ¢ D.}.
There is a canonical function fj €@ (Dj)* .
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THEOREM 4.6. The current > ; dlog fj represents a nonzero class in the

space
2n—1
W "™ (GL,,(C), Q(n).

PRroOOF. Let us prove that 3" i div f] = 0, where div fJ is the divisor of
fj on ﬁj‘ considered as a codimension 7 cycle on GL(V,). Note that

I - '
d1vfj = ZJ. — Zj , Where
(L], Ly Jyand LInL" " — oy,

(L{, LYy and LinL"™" —q),

. . ol
Zy ={(Ly, Ly) L, Ly

— ° . j —n—j+1
Z; ={(Ly, Ly) | (L], Ly™"7*Y

Therefore it is easy to see that 7. div f; = 0 and hence ) ;divf;=0. So

the current Zjdlogfj represents a class in WOHZ"_I(GLm((C), Qn)). It
remains to prove that it is nontrivial.

Let Gr(N—m, N) be the Grassmannian of codimension m subspaces in
Vy - There is a canonical m-dimensional bundle E over it: the fiber over
plane h is ¥, /h. Let us choose an affine (m—-n+1)flag L' ... c "
in Vy. It determines a Chern cycle ¢,(E; L) C GI(N — m, N). Let
n: E - Gr(N —-m, N) be the bundle of frames (e,s...,e,) infibers of E.
This is a principal GL, -bundle. Let us construct a cycle B, C E together
with a rational function &y, € F(B,,) such that

divg, =n"'(c, (E; L"), (4.13)
and for generic / € Gr(N — m, N) the intersection

(B, g,)Nn '(h) coincides with ;. 1), (4.14)
J

constructed using the projection of the flag L* onto Vy/h . (More precisely,
a frame (e;,...,e,) defines an affine (m—n+1)flag (e;...; €nnsl)
and this flag together with the projection of L® should satisfy 4.12.) Con-
ditions (4.13) and (4.14) just mean that the cohomology class of the current
3 y dlog fj is the transgression of the mth Chern class of the universal bun-
dle. Moreover, they give a precise description of the cycle B, : it is closure
of the union of cycles ZDJ. c U, n_l(h) constructed using the projection
of L*; here A runs through an open part in Gr(N —m, N). It is easy to
see that for the natural invertible function &, on B, (4.13) holds.

§5. Explicit formulas for the universal motivic Chern classes
¢, € HZ"(BGLm. , Q(n)) for n <3

First of all let us recall what the motivic complexes are. So for conve-
nience of the reader I will reproduce in 5.1-5.3 basic definitions and results

from [G1, G2].
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5.1. Motivic complexes. Let F be an arbitrary field. Denote by Z[PFI] . |
a free abelian group generated by symbols {x}, where x runs through all
F-points of P!, Letus define subgroups R, (F)cC Z[P}] (n < 3) as follows:

°© R/(F)isa subgroup generated by {xy} - {x} — {y}, where X,y
run through all elements of F* _

° R,(F) is a subgroup generated by ZLO(—I)’{r(xo, Xy »%4)},
where (X9, et X,) run through all configurations of five distinct

points of Pl and rXs e, x,) = f’; :j;;gz:j;g is the cross-ratio.

° Ry(F) is a subgroup generated by Zf=0(—1)i{r3(l y e ,7:., sl
where ([, ..., l) run through all configurations of seven points in
P; in general position and rs(y, ..., le) € Z[P;] is the generalized
Cross-ratio;

AGLL) - ATLTL . ATTT
r(y o 1) = Alt{ (bl - Al LLy) A(eﬁf)}, (5.1)
Al L) ‘AL L) A(LL L)

where Altf(I,, ..., 1) := Toes, D1, .., Lsy) -
Here Z are vectors in V> \ 0 that project to the points I, e P( V;). The
right-hand side of (5.1) does not depend on the volume form in V, and on

lengths of vectors I;. So the cross-ratio of Six points in P,,% is well defined.
Put

_ Z[P}]
5= ey 0 ooy

There is a canonical isomorphism B\(F) S F* given by the map {x} > x;
{0}, {c0} 1. Let us consider the following complexes B (n):

By(1): F*, :
B.(2): B,(F) 2 A2~ | (5.2)
Br(3): By(F) 2 B,(Fy@ F* % A'p*

Here

L{xN=010-x)Ax,

O({x}) ={x}®x; G{xtey)=(1-x)AxAy,
and by definition 0,({0}) = 0,({o0}) =0, n= 2, 3. Note that d300,({x}) =
(I-X)AxAx=0 modulo 2-torsion, so B.(3) isa complex.

THEOREM §.1. 3,(R(F))=0.

PROOF. See §3 in [G2]; see also §5.3 below.

In complexes (5.2) the groups B (F) are placed at degree 1 and d, has
degree +1.

The complex B(2) is the well-known Bloch-Suslin complex.

(5.3)
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5.2. The motivic complexes I'(X ; n) for a regular scheme X (n < 3). Let
F be a field with a discrete variation v and the residue class field Fv . Let
us construct a canonical homomorphism of complexes

8,: BF(n)—>B (= D[-1].

There is a homomorphism 6: A"F* — A"~ 1F uniquely defined by the
followmg properties (4, € U, u +— % is the natural homomorphism U —

Fv,and 7 is aprime, ord, w =1}):
O@Au A Au, | )=d, A -ANU,_;
2. G(ul/\---/\un)=0.
It clearly does not depend on the choice of 7.
Let us define a homomorphism s,,: Z[PFI] — Z[PFLU] as follows:

{x} if xisa unit,
5.4
5 {x} { otherwise. (5:4)

PRrOPOSITION 5.2. Homomorphism (5.4) induces a homomorphism
v 5,: B(F)— B, (F,), n=2,3.

Prookr. Straightforward but tedious computations using formula (3.17)
from [G2] for generators of the subgroup R,(F).

To avoid these computations one can consider subgroups % (F) C Z[P ]
defined in § 1.4 of [G2]. Then, essentially by definition, s, (% (F ) =Z,(F v)
and 6(R,(F)) = 0. So we get the groups &, (F) := Z[P;]/.%n(F } together
with homomorphisms s, : &, (F) — %, (F,).

Set . -

- * - n—k—1—=*
8,:=5,80: B (F)®A""F* > B (F)®A" " 'F,. (5.5)

LEMMA 5.3. The homomorphism 8, commutes with the coboundary & and

hence defines a homomorphism of complexes (5.3).

Proor. Straightforward computation. See also § 1.14 in [G1], where the
corresponding fact is proved for groups & (F).

Now let X be an arbitrary regular scheme, X i) the set of all codimension
i points of X, F(x) the field of functions corresponding to a point x € X
We define the motivic complexes I'(X, n) as the total complexes assomated
with the following bicomplexes:

« 0
rx,1):; FOT S [z
XEX,

I(x,2): AFX)* 2 ][] Fx) = [] 2

xeX, XEX
|5

B, (F(X))
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LN [[A*Fx)* 2 ]_[Fx)

X€X, XEX,
[s

5[]z

*€Xg)

B,(F(X) @ F(X)" 2 B (F(x))

T&

B4 (F (X))

where B, (F(X)) is placed at degree 1 and coboundanes have degree +1.

The coboundaries 0, are defined as follows. O =1l,e X, 6 . The others
are a little bit more complicated. Let x e X ) and v (y) » U, (¥) be
all discrete valuations of the field F(x) over a point y ¢ X(k +) Y EX.

Then F(x), (x); = F(x)v ) 2 F(y). (If X is nonsingular at the point y, then

F(x), (%), =F(y) and m = 1 .) Let us define a homomorphism 0,: A’F (x) —
F(y)" as the composition

N (X)i/F(y)

AF(x) 24, — F(y)",

@F( X);

(5.6)

®?,
—L o™ 7L 7.

and F(x)* o

5.3. Motivic Chern classes ¢, € H2”(BGLm(F )es Z(n)), n < 3. Recall

that
== G3 e

So 2
BG, =pte=G&=G
ol

We must construct a 2n-cocycle ¢, in the bicomplex

F(G;n)i»---L‘»F(G";n)—» S—‘>I“(G2"—J;n), (5.7)

* i :
where s* = 37 (—1) ;. Its components in

TG n) <5 256" ),
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should be in the following part of the bicomplex:

@ Z
xeG(")
Ta
D Fexy S P OFEy
x€G,_y xEG(z,,_l) '
la
P NFE) S

xeG(Z,,_z)
2 P ATIF

x€Gpy,
la
A"F(G"".
In fact the components of ¢, in (5.8) were already constructed in §4. Recall
this construction. Let a be an affine (m — n + 1)-flag in an m-dimensional
vector space V™. For each partition Jo+ -+ J, = m— n, irreducible
subvarieties
. N
Djo,...,j,;a € G(n—r) ’

together with elements

—~ r * .

a)fo»---,j,;a EAF(Djo,...,j,;a) > (59)
were constructed. More precisely, if

(Lys .- Lyi=(a, ga, ..., &4a),

where (g;,...,8)€D; ., C G’ , then

r
Jp 1 tlot! J+1
(@rrigt, ... 0"
p=0

is a configuration of #+1 vectors in an r-dimensional vector space. Applying
to it the homomorphism f.(r): C,(r) » A'F", we get the element (5.9). The
collection of elements

—~ ~ r . *
wr = Z wjo,...,j,;a € @ A F(Dj()""’jr;a)

Jotrtj=m—n jo+-..+j2=":—n . (5 10)
e P AFx)
X€Gy,

(n—r)

BN e Ty e—y

BT
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forms a cocycle in the bicomplex (5.8). (The proof of this fact is similar to ‘

the proof of Theorem 4.3.) The components of ¢, in the bicomplex
T(G"; n) 25 TG ! n) 25 2L TGP 0 (5.11)

are constructed as follows. There is a homomorphism of complexes (see (2.4),

(2.5)
T: C (A" " (m)) - BC,(n),

where BC,(n) is the total complex for the Grassmannian bicomplex (1.2).
We will construct morphisms of complexes

f(n): BC*(n) > Bp(n) (n<3) (5.12) ,
such that for » > n + 1 the 8-coboundaries of clements
f(n)oT(a, ga, ..., ga) (5.13)

are equal to zero. The collection of elements (5.10) and (5.13) form a cocycle

¢, in the bicomplex (5.7).
Let us describe the construction of the homomorphism (5.12).
a) n=1. f(1): C;(1) > F" is the only homomorphism we need. It is

easy to check that both fi(1)o d': Cy(2) — F* and f(1)od: C,(1) - F*

are zero homomorphisms, so that we get a homomorphism f(1): BC*(1) —

F*[-1]. ‘
b) n =2. We must construct a homomorphism from the total complex

associated with the bicomplex ' v

— C,3) —% G3)

J« L

— . 2 4 ¢

to the complex

0 — B,(F) — A*F",

A homomorphism f,(2): C,(2) — A’F* was defined by formula (3.2). Lem-
ma 3.2 shows that one can take a map from C;(3) to B,(F) equal to zero. )
Let us define a homomorphism "

5(2): CG5(2) = B,y(F)

setting _
(lys ooen ly) P {r(TO, o)l
- where (70 ey 73) is a configuration of four points in P;, corresponding to .
the one ([, ..., I;) of four vectors in ¥?. Then 5,(2)od: C,)(2) — B,(F) ‘
is zero by definition of the group B,(F).
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LEMMA 5.4. f;(2)od =0.
ProoF. We have to prove that for ([, ..., ;) € C,(3),

4 ; — - = -
SN, o s, 1)), =0 in By(F). (5.14)
i=0

There is a conic (a curve of order 2) passing through five points 70 s eens 74
in P; . Let us consider it as a projective line. Then (5.14) is just the 5-term
relation for five points 7:’ on this projective line.

So we have defined a homomorphism f(2): BC*(2) — B.(2). It is non-
zero only on the Grassmannian subcomplex C*(2) Cc BC™(2).

c) n = 3. We have to define a homomorphism from the total complex

associated with the bicomplex

| ! |
—4 . C,(4) —L— Cy(4) —4— Cy(4)

e e |«
.. =4 c3) 4 ¢,3) 4 G03)

to the complex

B,(F) - B,(F)@ F* -2 A’F".
A homomorphism f;(3): C;(3) — A*F* was defined by formula (3.2). Set
£,3): C,(3) = B,(F)® F",
L03): Uy oo L) = (2) AR({r(Lg | 15 .5 L)Y, @ AU 1 L)).
PROPOSITION 5.5. f,(3) does not depend on the choice of the volume form
w, € A*(V*)* in the definition of A, 1;, ).

Proor. The difference between the right-hand sides of (5.15) computed
using A-w, and @, is proportional to (left-hand side of (5.14)) ®4. So it
is zero by Lemma 5.4.

PROPOSITION 5.6. We have f,(3)od =3 o f,(3).
ProoF. Direct computation using the formula
. sy AL L)AL, L)
rly, ..., 1) = NURALONAR

(5.15)

Now set
[5(3): C5(3) = By(F)

. Ay, 1y, 1) - AU, Ly, 1) Ay, &y, 15)} (5.16)
f5(3).(10,...,15)HA1t{A(l,11’14)_A(11’12,15)_A(12,10’13) )
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THEOREM 5.7. We have fi(3)ed =96 o f5(3).
PROOF. See the proof of Theorem 3.10 in [G2].
PROPOSITION 5.8, f(3)od =0 for k=3,4,5.

PROOF. For k = 3 this is Lemma 3.2. For k = 4,5 see Theorem 3.12
in [G2).

ProrosiTION 5.9, f5(3)ed =0 in B,(F).

Proor. Follows immediately from the definition of the group By(F).

So one can define a homomorphism f(3): BC*(3) - B,(3) using homo-
morphisms f, (3) on the subcomplex C*(3) c BC*(3) and zero homomor-
phisms otherwise.

Now consider an element

fi3)oT(a, ga, ..., g,a) € B,(F(GY) ® F(GYY,

Then
0,0 f,(3)oT(a, ga, ..., ga) € P B,(F(x)). (5.17)
x€Gy,

LEMMA 5.10. The left-hand side of (5.17) is equal to zero.

ProoF. It follows from the definition (5.5) of 0, and the following re-
mark: the term A(ly, 1), 1,) appears in formula (5.15) with the coefficient

{r(l511,, I, 1, I}, ~{rly 1 4y, Iis 1y, 13)},
which is obviously zero if A(l0 > L)=0.
So we have proved that the collection of elements (5.10) and (5.13) form
a cocycle in the bicomplex (5.7). The cohomology class of this cocycle does
not depend on the choice of an affine (m—-n+ 1)flag a. (Different flags
yield canonically cohomologous cocycles.)

S.4. Chern classes in Deligne cohomology. Let us assume that there exists
a 2n-cocycle L, from Conjecture 1.1’ (A precise construction of this co-
cycle for n < 3 can be found in §9 of [G1], see also [G2] and 6.3 below.)
The main construction of §2 gives an explicit construction of Chern classes
in bi-Grassmannian cohomology and hence, applying ]L; , in real Deligne co-
homology. We will see in the next section that these Chern classes coincide
with the classical ones (see Theorem 5.11).

5.5. The universal Chern classes in Deligne cohomology. Assuming the
existence of IL:, we construct

¢, € Hy'(BGL, (C), R(n)).

The Dolbeaux resolution of the complex associated with the bicomplex (1.13)
provides us with a complex computing real Deligne cohomology of an alge-
braic manifold over C. We will denot&_e this complex by R(X, n). We have
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to construct a 2n-cocycle in the bicomplex

2n—1

R(G, 1) 2 - 2L RG", ) = - 2L RGP ) (5.18)

(compare with (4.7)). First of all let us construct its components in
R(G, n) =2 ... 25 R(G", n). (5.19)

For a subvariety Y — X of codimension 4, there is a canonical morphism
of complexes i : R(Y, n) - R(X, n+d)[2d]. In 5.3 we have constructed a
chain (5.10) in the bicomplex (5.8) corresponding to an affine (m —n + 1)-
flag a in V,,. Each component of this chain lies in A"F(x)", where x isa
codimension n —r point in G’ . There is a canonical map °

A'C(x)" - R(SpecC(x), r),
[(n—1)/2] 1
fll\.../\frr—»(nrAlt( ; (2k+1)!(n_2k_1)!log|f1|dlog|fl|
/\---/\dlog|f2k+1|/‘\diargf2k+2/‘\---/\diargfr,‘,
,dlogfl/\---/\dlog];,))

commuting with residue homomorphisms. So we get a chain in (5.19).
The components of ¢, in the bicomplex

2n—1

R(G", n) =5 - <L RGP, )

are constructed as a composition of the homomorphism of complexes
T: C,(4" " (m)) - BC,(n),

with the 2n-cocycle ]L; that lives on BC,(n) (or, better, on the bi-Grass-
mannian a(n) ). More precisely, to construct the ]R(Gk , n)-component of c,
we must restrict homomorphism T to elements (a, g,a, ..., g.a), where
a is a given affine (m —n + 1)-flagin V, .

THEOREM 5.11. a) The constructed chain c, is a cocycle in (5.18).
b) The class of c, equals the usual Chern class in H;"(BGLm (C), R(n)).

ProoF. Part a) follows from the definition and previous results.

b) (Compare with the proof of Theorem 5.10 in [G2].) Let n: EG, — BG,
be the universal G-bundle. Then EG, =BG,y and so any i-cochain ¢,
for BG, defines an (i —1)-cochain ¢, for EG,: ¢, := ¢, . Moreover,
if ¢ =0 and ¢, is a cocycle then d¢,) = ¢, . Therefore ¢, = Clg 18
the transgression of the cocycle ¢, .
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Applying this result to the cocycle ¢,, we get a cocycle c; in

2" 1(GL (C), R(n)) The usual exact sequence for Deligne cohomology
g1ves us

“YGL,,(C), R(n))

H"(GL,(C), R(n)) n B!

(GL,(C), &"). |

It follows from definitions that a(c;) coincides with the class constructed in
4.4, Tt is nontrivial according to Theorem 4.6.

This proves that the cocycle ¢, coincides with the usual Chern class in
HZ"(BGL (C), > R(n)) modulo decomposable elements. (Decomposable el-
ements go to zero under transgression.)

To prove that ¢, coincides with the Chern class exactly, consider the
standard long exact sequence for Deligne cohomology:

H"Y(BGL,,(C),, C) — HX(BGL, (C), , R(n)) —

Lk, H(BGL,, (C),., R(n) @ H(BGL, (C),, ")
It is known that F2"! (BGL, (C),,C)=0. So we get an inclusion

H2BGL,(C),, R(n)) "L g2 (BGL,,(C),, R(n))®H™"(BGL,_(C),, @°").

(In fact both g, and B, are isomorphisms because HZ"(BGL (C), R(n))
is a pure Hodge structure of type (0, 0).) To prove b) it suffices to prove
the following

LeMMA 5.11°. The class B,(c,) coincides with the usual nth Chern class
in H"(BGL, (C),, @°").

This lemma will be proved in 5.8 below.

5.6. Expllclt formulas for measurable cocycles of GL(C). We assume that
there exists a function P on G _, satisfying (2n — 1)-term relations (1.14).
Recall that such a funct1on can be considered as a function on configurations
of 2n vectors in general position in C" satisfying the equations

Z( l)P (/. ,....,12,,)=0, (5.20a)

E( VP, ... L,...,L)=0. (5.20D)

We assume also that P is a component of a 2n-cocycle ]L from Conjecture
1.1,




< M g -

EXPLICIT CONSTRUCTION OF CHARACTERISTIC CLASSES 201

"THEOREM 5.12. Let a be an affine (m — n + 1)-flag in V.. Then
P (T(gya, ..., 8,_14)) is a 2n-cocycle of GL, (C). Its cohomology class

coincides with the Borel class in H(Z,Z)_ I(GLm (C),R) (m>=n).

Recall that here 7': C (4" " (n)) — BC, (n) is a homomorphism of
complexes. The cocycle condition follows from this fact and (2n + 1)-terms
equations (5.20).

Let G° be a Lie group G made discrete. The morphism of groups
GLm(C)‘s — GL, (C) provides a morphism

e: BGL, (C)) - BGL,_(C),.
Therefore,

e": H)'(BGL, (C), , R(n)) — H'(BGL, (C)°, R(n))
2n—1 0 2n—1
=H""(BGL_(C),, S = H," (GL,(C), R(n — 1)).
Here S° is a sheaf of smooth functions. It is known that e* maps the
indecomposable class in H;"(BGLm(C), Z(n)) just to the Borel class in

H(zn'z)_ l(G’Lm((C) » R(n — 1)) (see [B2, DMZ]). The arguments in the proof of

Theorem 5.11 show that the constructed class ¢, € H;"(BGLm (©),, R(n))
lies in
Im Hy"(BGL,,(C), , Z(n)) ~ H}'(BGL,(C), , R(n),

and in fact coincides with the image of the standard class in

H.'(BGL, (C),, Z(n)).

In our case e*(cn) coincides with P (T(gya, ..., 8rp—14)) just by definition.
Theorem 5.12 is proved.
REMARK 5.13. Explicit formulas for functions P, are known for n < 3:

By, L) =0y, ..., 1)),

5.21
Pyl ..., k) =, ..., L)) (5.21)

- 5.7. Chern classes ¢(E) ¢ H"(X, k™) constructed in §§3-4 coincide
with standard classes. Gersten resolution (4.1) (see §6 in [So] or [NS]) pro-
vides us with an isomorphism :

H'(X, K ®Q5 CH (X) @ Q.
Our next goal is to show that i (c;‘"’(E )) coincides with the usual Chern class
¢,(E) e CH"(X).

Let us call a vector bundle E “nice” if there is a section [ = (/ L. ; 1)
of the bundle of affine p-flags (p =dimE — n + 1) such that the cycle

CE; D) :={xeX|I"x)A- AP (x) =0 but zl(x)/\---/\zp“(x) # 0}

has codimension n. Then it represents the usual Chern class in CH"(X).
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PROPOSITION 5.14. For a “nice” vector bundle E one has
M
i(c, (E)) = ¢, (E).

PROOF. Let X = | U; be a Zariski covering such that E |y is trivial and
there are sections s; € T(U;, 4°(E)) satisfying the condition that for any
point x of Uio--'i sections U (X), ..., s; (x) are in general position. Then,
according to Theorem 3.4, v

M - M
¢, (E;s;):= S,(n)o T(Sio,...,s,. JEK, (ﬁUiom’_ )
is a cocycle in the Cech complex c(u,, éf:{) .

Let us consider the bicomplex computing the Cech hypercohomology for
this covering with coefficients in the Gersten resolution for K f

For example in the case n = 2 it looks as follows:

D1l =z S I =

i xeU, ig<i, x€U,

LUt
o] o]
D I Feor -2 D I] Fxr % ...

i xEUim i<, erfofl(l)

o dl
) 3
D K,(F(U)) 2, DLFEU,) 2 P K(F(U,;,0) =
i <] i<y <i,
Here X(n) is the set of codimension 7 irreducible subvarieties in X, ¢ is
Cech coboundary, 8 and J§ have degree +1, and the group D, K;W (F(U))
in the bottom left corner are placed in degree (0, 0). Note that c,(E; 1)
can be considered as an element in Uco Z.
. )

Let us construct a chain » = 2.b, n—1—x Of degree n — 1 in the total
complex associated with the bicomplex such that (8 + 0)b. = c,(E; ) -
M
¢, (E;s;).

To explain the idea let me first construct b in the case dimE =n = 2.

Then 3
bio= 2 N s, ,5) € D rF@,),
and o 1 o 7
bo=3 500 e @ 1 Fe.
iyx F i xeU,

. i
In the last formula summation is over all codimension 1 subvarieties of U,
such that / is collinear to $; at points of this subvariety. In this situation
there is a rational function / /s; € F(x)*.
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In the general case set
byt o= Y. T.(m)eT(, Sipprs, )€ €D KY(F(U i)

fg<e<i, | fg <<,y

by o= > Joient =k + 1) 0 T(U(x), 5, (x), ..., 5, )

. " n—k
o<t <y gy

(S @ ]_I K k+1(F(x))

fg< <y er,o__,,.n_k

To explain the meaning of the right-hand side of this formula we need
several definitions. Let (L(') yeens L;) be a configuration of r + 1 affine

p-flags, J = (Jos+++»J,), and Jot-+Jj, =p—1. We say that this
configuration is J-weakly degenerate if the sum L]o -+ Lf' is direct, the

configuration of r 4+ 1 vectors
LR+ L 0L P (5.22)

generates an r-dimensional vector space, and every r of these vectors gen-
erate the same vector space.

In the right-hand side of the formula for bk n—k—1 Summation is over all
codimension k — 1 subvarieties of U wd_y such that the configuration of

(n — k + 1)-flags (/, Sip e ) at the generic point of x is J-weakly
degenerate for some part1t10n J In this case T (I(x), s, (x) > S k(x))
is the sum over all such partitions J of conﬁguratlons of vectors (5.22).
Then it follows immediately from the proof of Proposition 4. 4, that

(0+6)b=c,(E;])-c, (E; ;).
Proposition 5.14 is proved.
THEOREM 5.15. For any vector bundle E over X the characteristic class
¢/ (E)e H'(X, kM)
constructed in §§3-4 coincides with the usual one, i.e.,
i(c, (B)) = ¢, (B).

Proor. We need the following result which is a particular case of Propo-
sition 2.4 from a paper of V. V. Schechtman [Sch].

PROPOSITION 5.16. Let
- i ,
ci=ci(Em)€H(BGLm.,_K_’.), Iigm,

be the Chern classes of the canonical m-dimensional vector bundle over
BGL,,.. Then one has an isomorphism

@H"BGL,. . K )=1,,...,¢T
m

]
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We have constructed classes
' e H'(BGL, ., KY),

Il
and proved (Proposition 5.14) that for “nice” vector bundles E over X one
has

fi@) = £y,

Here f;: H' (BGL,,., K)—- H(x, &) is the homomorphism induced by
vector bundle E. This implies Theorem 5.15, Indeed, consider as an ex-
ample of a “nice” vector bundle, for example, the canonical m-dimensional
vector bundle over Gr(N —m, N), N is big. Then the corresponding ho-
momorphism fg is injective. Theorem 5.15 is proved.

5.8. Proof of Lemma 5.11". Recall that there is canonical map of sheaves

dlog: gnM — Qﬁ,g = Q7

{fi,... ,fn}»—edlogf1 /\---/\dlogfn.
It follows from the definitions that

M
By(¢,(E)) = dlog(c) (E)).
This together with Theorem 5.15 implies Lemma 5.11’.

§6. Conjecture

6.1. The motivic Hopf algebra A(F ). - First of all let us reproduce from
[BGSYV] the definition of groups 4,(F), n=0, 1, 2,.... An n-simplex is
a family of n + 1 hyperplanes I = Ly, ..., L,) in P;f . An n-simplex is
said to be nondegenerate if the hyperplanes are in general position. A face
of an n-simplex is any nonempty intersection of hyperplanes from L. A
pair of n-simplexes (L, M) is said to be admissible if 7, and M have no
common faces.

Define the group A4, (F) as the group with generators (L; M), where
(L; M) runs over all admissible pairs of simplexes, and with the following
relations:

(A1) If one of the simplexes L or M is degenerate, then (L;M)=0.
- (A2) Skew Symmelry.  For every permutation c:(0,1,...,n) —
0,1,2,..., n) one has

(0L, M)=(L; oM) = sgn(o)(L; M),
where sgno is the parity of ¢ and ol = (LU(O) eer s La(n)).
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(A3) Additivity in L. For every family of hyperplanes (L, ..., L,..)
and any n-simplex M such that all pairs (Lj ; M), where L/ =

(Lgs +--» Lj, .oy L), are admissible
J=n+1 .~
> =My =0
j=0
Additivity in M . For every family (M, ..., M, ) and any simplex
L such that all (L; M’) are admissible
Jj=n+1 . —
Yo (1L M) =0.
j=0

(A4) Prgjective invariance. For any g € PGL,, (F) onehas (gL; gM) =
(L; M).

There is a canonical isomorphism
rid|(F)y—F", ri(Ly, L; My, M}) — r(Ly, L,, My, M,).
By definition, 4, =7Z. Set

A(F), = Q:; A, (F).
=0

Then there is a multiplication m: 4, ®4,, — 4, anda comultiplicatién
A4, — Dy, 4, ® 4, that make A(F), a graded commutative Hopf
algebra.

In the case F = C there is a canonical holomorphic differential form
w, with logarithmic singularities on the hyperplanes L;. If z, = 0 is the
homogeneous equation of L;, then w, = dlog(z,/z)) A--- A dlog(z,/z,).
Let A, bean n-cycle representing a generator of the group H, (Pe, UM -
Then

a,(L; M) :=/ wy
AM

is a multivalued analytic function called the Aomoto polylogarithm [Ao].
This integral depends on the choice of A,, but does not change under con-
tinuous deformation. _

Let us denote by Bar A(F) the complex that we would get applying the
reduced bar construction to this Hopf algebra. Recall that

BarA(F): A, > A, 04, > 4,04,04, % ...,
where

s(a; ®ai2®'”®ai")=zai, ®ai2®---®a,.h—ail®Zai2®---®ai"+---.
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Here A4 := &) A4;, Z(a) =A(a)-(a®1+1®a) is the reduced coproduct, '

4 placed in degree 1 and the differential has degree +1. Let Bar(n) A(F) be
the degree n part of this complex:

o 5 s 5
Bar(,,)A(F).An——» @ Ail®Ai2——> @ Ai,®Ai2®Ai3_’"'-

ii+iy=n i+ ti=n

6.2. Recall that there is a “cohomological” complex BC*(n) with a dif- |
ferential 9 of degree +1: |
|

|

|

-5 BCn) 2 BC () 2, ... 2, BC"(n).
By definition, BCi(n) = BC,, ,(n) and BCi(n) is placed at degree ;.
CONJECTURE 6.1. There is a canonical homomorphism of complexes
h,: BC*(n) — Bar(n) /I(F)

such that the homomorphism

h,(n): BC"(n) — Q) 4,(F) = QR F”

is given by the formula

h(m) s . ) = AR A, ..., T, ..., 1)

i=1

(compare with formula (3.2)).

6.3. Relation with Conjecture 1.1. Let g € 4,(C(X)) and a(a) be the
corresponding Aomoto #n-logarithm considered as a function on (an open
part of) X,

PROPOSITION 6.2. Let A"_l’l(a) =2.b,0c;€ 4, , ®A bethe (n—1, 1)
component of the coproduct. Then
da(a) = Za(b,.)dloga(c,.).

PROOF. An exercise. : |
Now let us define a map of complexes

D' Bar, A(C(X)) — ﬁ-.(SpCCC(X)) )

as follows ( Q* is the De Rham complex of multivalued forms). Let q, ®
'®a,€4; ®--®4, . Then

D(a,® -®a )= o(a))dloga(a,) A--- Adloga(a,)

if I = == I, =1 and zero otherwise,
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FIGURE 2. L,{t}

LEMMA 6.3. 9 is a homomorphism of complexes.

Proor. Follows immediately from Proposition 6.2.

The composition & o h, gives us a multivalued n-logarithm L, on the
bi-Grassmannian satisfying all conditions of Conjecture 1.1.

Let me emphasize that the constructed n-logarithm L catches only a
small part of the homomorphism hn , because Z is zero almost everywhere.
Further, multivalued functions appear only at the last moment.

I know an explicit construction of homomorphism h, for n < 4. For
n < 3 it is the composition of homomorphism of complexes (5.12)

f(n): BC,(n) — By(n),
constructed in § 5.3 with canonical homomorphism of complexes
I(n): Bp(n) — Bar,, A(F).
To give the definition of /(n), let us first define a homomorphism

L,: Z[Py] — A (F).

Let Xy, ..., X, be coordinates in the affine space P"\L0 such that L, is the
hyperplane x; = 0. Consider the hyperplanes

0=1-x; I-x =}c2; Xy =X35...3%,_ =X,; X, =t, te€F",
by M,, M, ..., M, M[(t). Set

(L, M(0) = (Lo, oo, L5 My, ..., M, M. (1),
L,({th) =(L; M), L,{0})=L,({cc})=0
(see Figure 2). Then oL, ({t})) = Li (1).
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I'will also use a notation z — L({1-z}). Now let us define a homomor-

phism of complexes / (2) as follows:

B,(F) —— A’p*

ll, @ llzm

4, LA A1®A1

L(2):x®y - (1/2)(x®y -y Q®x),

L@ {x} = Ly({x}) - (1/2) Li,({x}) - x.
THEOREM 6.4 [BGSV]. / (2) is a homomorphism of complexes.
Let us define a homomorphism of complexes

By(F) —  B,(F)eF* —_, A3p

e | |u® |

4 T Mol 04,04, —, ®4,
by the following formulas:

5(3): x, ®X, ®X; (1/6)A1t(x1 ®X, ®x,),

LG): {x} ey = (1/2)(L,2)({x) ® y — y®L(2)({x}))
—(1/12)(L({x}) - yox+x® Li({x}-y)
+A12)L({x)@x -y +x-p ® L ({x})),

B 2} o Ly({x}) ~ (1/12)Ly({x)) - x + (1/2)L, (x) - x°.

In these formulas the dot denotes multiplication in the Hopf algebra A(F), .
THEOREM 6.5, I(3) is a homomorphism of complexes.

There are similar formulas for homomorphism / (n) forall n.
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